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High-Accuracy Calibration of a Visual Motion
Measurement System for Planar 3-DOF

Robots Using Gaussian Process
Sheng Yao , Hai Li , Kai Wang , and Xianmin Zhang

Abstract— Visual motion measurement systems (VMMSs) are
widely used in robotics for pose estimation. A common charac-
teristic of VMMSs is that the measurement repeatability is high,
but the absolute measurement accuracy is relatively low, once a
commercial lens with a large field of view is used. To improve the
measurement accuracy of the VMMS for pose tracking of planar
3-degree-of-freedom (3-DOF) robots, a coarse-to-fine calibration
method is presented in this paper. In this paper, after the VMMS
is constructed, a degenerated perspective-n-point (DPnP) algo-
rithm for pose estimation of 3-DOF robots is introduced. Then,
an analytical calibration technique is implemented to obtain the
camera intrinsic parameters required by the DPnP algorithm.
Subsequently, a fine calibration step based on Gaussian process
is developed to compensate the estimated pose of the DPnP
algorithm. To investigate the effectiveness and performance of the
proposed method, a series of the simulations and experiments are
carried out on a planar 3-DOF robot. The results demonstrate
that the proposed calibration method is quite robust and can
improve the measurement accuracy up to 90.47%. Specifically,
in a measurement field of view of 200 mm × 200 mm, the absolute
errors of the 3-DOF pose obtained from the VMMS are reduced
to below 0.03 mm and 0.016◦ .

Index Terms— Visual motion measurement system, coarse-
to-fine calibration, Gaussian process, planar 3-DOF robot,
high-accuracy calibration.

I. INTRODUCTION

OWING to the advantages of a large travel range and high
positioning accuracy, three degree-of-freedom (3-DOF)

macro-micro manipulator systems play a significant role in the
field of precision engineering for micromanipulation [1], [2].
Concretely, the macro part of these systems normally aims
to provide a decimeter-scale workspace, while the micro
part achieves fine positioning with an accuracy down to
the nanoscale [3]. The key to combining these elements in
macro-micro manipulators is maintaining the positioning error
of the macro part at a level that is smaller than the workspace
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of the micro part. In order to improve the positioning accuracy
of the macro part within its full working range and achieve a
good combination, a proper method to ensure large-range and
high-precision measurements is required.

With the desirable properties of noncontact measurement
capability, high resolution and strong expansibility, visual
motion measurement systems (VMMSs) are a top candidate
for multi-DOF pose measurements [4], [5]. In order to mea-
sure pose with high absolute accuracy, calibration proce-
dures are indispensable. Generally, calibration in metrology
is the process of adjusting the output of a measurement
device to match a specified standard and perform properly.
For VMMSs combine with single camera, pose estimation
normally involves a rigid transformation relating the camera
coordinates to coordinates of known geometric features, which
is also known as the perspective-n-point (PnP) problem [6].
To solve the PnP problem, achieving accurate camera intrinsic
parameters is essential. To date, many methods for calibrating
camera models and acquiring the intrinsic parameters have
been presented in the field of computer vision [7], [8]. How-
ever, when these intrinsic parameters are directly used to solve
the PnP problem, the obtained absolute accuracy of the pose
is normally much lower than the repeatability accuracy [9].
The possible reasons for this phenomenon are as follows:
(1) the accuracy of the known geometric features used in
the camera calibration is limited (i.e., the accuracy of the
intrinsic parameters is limited); and (2) the feature extraction
algorithm used in the PnP solution may generate randomness
(e.g., environmental vibration and randomized manufacturing
errors). In general, these kinds of errors are difficult to model
or compensate with conventional techniques.

To reduce these kinds of measurement errors, a promis-
ing solution is to use a learning-based approach for the
fine calibration of VMMSs. By learning a system model
from experiential data directly, learning-based approaches can
adapt to complex system behaviors that are difficult to rep-
resent with idealized analytical models or to be modeled in
advance. Of the well-known machine learning approaches,
the Ridge [10] and Lasso [11] methods are considered as
typical regression analysis methods for modeling multi-feature
problems. Although they are fast and straightforward with
a good generalization capability, these models may exhibit
underfitting that cannot effectively reduce measurement errors
for VMMSs. Many researchers have also investigated image
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correction using neural network methods and showed a reduc-
tion in measurement error [12], [13]. However, neural network
methods still suffer from a high computational cost and
can exhibit accuracy issues when the population of training
dataset is small [14]. Based on Bayesian inference, Gaussian
Process (GP) uses lazy learning to predict a value for an
unmeasured point, and the GP model does not require a
large amount of training data because of its robustness and
smoothness, which is thus efficient and suitable for regression
problems with a small number of feature sizes and a small
amount of training data. GP also has many useful properties
such as a closed-form predictive distribution and wide expres-
sivity that it can handle both linear and non-linear data [15].
In practice, as a result of their desirable performance, GP mod-
els have been employed in many research areas such as
robot control [16], spectrometer calibration [17] and robot
calibration [18]. Moreover, GP models are non-parametric
models, which should perform properly in many situations
with little effort dedicated to tune the GP model parameters.
For VMMSs in macro-micro manipulator systems, only a few
hundred data of residual measurement errors at positioning
points will be collected as training data. Hence, the GP method
is expected to work well for this application with a relatively
small amount of training data.

In this study, a high-accuracy calibration method that can
apparently improve the measurement accuracy of a VMMS
for planar 3-DOF robots is developed. To realize a pose mea-
surement of the 3-DOF robot, a monocular vision system is
established and a degenerated PnP (DPnP) algorithm for planar
3-DOF pose estimation is introduced. Afterwards, a scheme
for obtaining the intrinsic parameters of the camera is briefly
described, and a method for compensating residual error using
GP is given in detail. Finally, simulations and experiments are
performed to demonstrate the feasibility and effectiveness of
the proposed method.

The remainder of the paper is organized as follows.
In Section II, the configuration of the VMMS and the DPnP
algorithm are introduced. A process for high-accuracy coarse-
to-fine calibration is presented in Section III. The validity of
the proposed method is verified by simulations and experi-
ments, as described in Section IV and Section V, respectively.
Conclusions and discussions on future works are given in
Section VI.

II. VMMS FOR PLANAR 3-DOF ROBOTS

A. System Description

Planar parallel mechanisms enjoy the advantages of
fast speed, strong load capability, and high positioning
accuracy due to small accumulative errors through kine-
matic chains [19]. Therefore, planar robots with transla-
tional and orientational DOFs are increasingly being used
in industry and have become ideal for micropositioning and
alignment [20], [21].

As sketched in Fig. 1, the manipulator system consists
of three main parts: a manipulator, motion control unit, and
VMMS. A planar 3-DOF parallel robot acts as the prototype
of macromanipulator, which is expected to load the micro part

Fig. 1. Setup of the manipulation platform.

and provide coarse positioning in macro-micro manipulation.
The motion control unit is used for trajectory planning and
movement control. The VMMS, which is circled by a red
dash line in Fig. 1, includes an optical lens, an optical sensor,
markers, and an image processor. Images are captured through
the high-resolution sensor and then transmitted to the image
processor, where they are further processed and provide visual
feedback to the control unit.

B. Degenerated Perspective-n-Point (DPnP) Algorithm
for Pose Estimation of the 3-DOF Robot

As shown in the subfigure of Fig. 1, IP is the image plane,
OP is the object plane, and Oc is the optical center. According
to the pinhole model [22], the relationship between 2D points
and 3D points can be written as

s

⎡
⎣

μi

νi

1

⎤
⎦ = A

[
R, T

]
⎡
⎢⎢⎣

Xi

Yi

Zi

1

⎤
⎥⎥⎦ (1)

where i is a label for the points, 2D points in the IP are
denoted by pi = (μi , νi ), 3D points in the OP are denoted
by Pi = (Xi , Yi , Zi ), s is an arbitrary scale factor, A is the
camera intrinsic matrix, and [R, T ] are called the extrinsic
parameters, which consist of a rotation and a translation [23].
Since the IP and OP are parallel in our VMMS, the number
of independent parameters in R is degenerated to one, which
is the rotation angle φ between the IP and OP coordinates.
In this situation, we name solving this problem as solving the
degenerated perspective-n-points (DPnP) problem.
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In terms of Fig. 1 and Eq. (1), the projective equation of
DPnP can be expressed as

s

⎡
⎣

μi

νi

1

⎤
⎦=

⎡
⎣

α 0 μ0
0 β ν0
0 0 1

⎤
⎦
⎡
⎣

cos φ sin(φ + π) 0 tx

− sin φ cos(φ + π) 0 ty

0 0 −1 tz

⎤
⎦

⎡
⎢⎢⎣

Xi

Yi

Zi

1

⎤
⎥⎥⎦

(2)

where α and β are the scale factors for the μ and ν axes on
the IP, (μ0, ν0) are the coordinates of the principal point, and
(tx , ty , tz) is the translational vector. Equating the last row of
Eq. (2), we obtain s = tz , and Eq. (2) can also be written as

[
μi − μ0
νi − ν0

]
=

⎡
⎢⎢⎣

cos φ

tz
αXi − sin φ

tz
αYi + tx

tz
α

− sin φ

tz
β Xi − cos φ

tz
βYi + ty

tz
β

⎤
⎥⎥⎦ (3)

To simplify Eq. (3) and remove the nonlinearity, let a1 =
tx
tz

, a2 = ty
tz

, a3 = sin φ
tz

, a4 = cos φ
tz

, and we obtain the following
equations[

μi − μ0
νi − ν0

]
=

[
a1α − a3αYi + a4αXi

−a2β − a3β Xi + a4βYi

]
(4)

From the equations above, it can be seen that each point
pair (pi �→ Pi ) involves two constraints. Therefore, at least
two control points are needed to obtain the parameters
(a1, a2, a3, a4). By concatenating Eq. (4) for all n control
points, we generate a linear system of the form

⎡
⎢⎢⎢⎢⎢⎣

α 0 −αY1 αX1
0 β −β X1 −βY1
...

...
...

...
α 0 −αYn αXn

0 β −β Xn −βYn
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⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b

(5)

After the intrinsic parameters are obtained from the coarse
calibration, a can be solved, and the input of the GP model
[Xin, Yin , φin ] can be calculated as⎧⎪⎨

⎪⎩

Xin = tx − tx0

Yin = ty − ty0

φin = φ − φ0

(6)

where [tx0, ty0, φ0] are the initial values related to the robot’s
origin. Then, the mapping relationship between the IP and
OP can be obtained after the fine calibration with GP
compensation.

III. HIGH-ACCURACY CALIBRATION

USING GAUSSIAN PROCESS

A. Coarse Calibration to Obtain the Camera
Intrinsic Parameters

Calibration is vital for VMMSs that require high a measure-
ment accuracy within a large field of view. The goal of a vision
system calibration is to identify the vision system model that
minimizes the difference between measured and actual values.

The calibration process of the proposed VMMS consists
of two steps. A coarse calibration is implemented using a

method proposed in the literature [7], which is one of the
most efficient analytic methods. Corner detection is used to
extract control points from planar pattern images, in order to
acquire the camera intrinsic and extrinsic parameters as shown
in Eqs. (1) and (2). Since radial components are the main
factor of lens distortion [24], the first two terms of the radial
distortion coefficients k1 and k2 are considered, which can be
formulated as⎧⎪⎪⎨

⎪⎪⎩

μu
i = μd

i + (μd
i − μ0)(k1r2

d + k2r4
d )

νu
i = νd

i + (νd
i − ν0)(k1r2

d + k2r4
d )

r2
d = (μd

i − μ0)
2

H 2 + (νd
i − ν0)

2

W 2

(7)

where H is the height of the image, W is the width of
the image, and (μ0, ν0), (μu

i , νu
i ) and (μd

i , νd
i ) represent

the principal point, undistorted and distorted pixel image
coordinates, respectively. The initial estimates of the distortion
coefficients k1 and k2 are set to zero. Together with the intrin-
sic and extrinsic parameters, k1 and k2 can be refined through
maximum likelihood estimation, which can be expressed by
minimizing the following equation

n∑
i=1

m∑
j=1

‖mi j − f (A, k1, k2, Ri , t i , M j )‖ (8)

where n is the image number, m is the control point number
on each image, mi j is image coordinate of control point, and
f (A, k1, k2, Ri , t i , M j ) is the projection of the control point
M j in image i in terms of Eqs. (1) and (7). To minimize
Eq. (8), the Levenberg-Marquardt optimization algorithm is
employed, and all parameters can be obtained.

B. Fine Calibration With GP Compensation
for the Measurement System

After the coarse calibration in the first step to identify the
best set of camera intrinsic parameters, there are still residual
errors from geometric and non-geometric error sources that
cannot be fully compensated by only changing the physical
model parameters. Thus, Gaussian Process is employed to
further calibrate the VMMS. Based on the intrinsic parameters
and DPnP algorithm, the remaining residual error � can be
written as � = ‖Pa − Pm‖ with the measured value Pm from
the coarse calibration and actual value Pa . Then, in the second
step of the system calibration, the minimization problem that
aims to minimize the overall error with GP compensation is
presented as follows

min‖Pa − Pm − y(x)‖ (9)

where y(x) is denoted as the GP model, and x is the input
vector. The minimization problem formulated in Eq. (9) is then
solved by computing the GP model.

Given a set of measurement residual errors, which is also the
training data, our goal of GP regression is to make predictions
of compensation values for unmeasured points. Generally,
GP is defined as a probability distribution over functions y(x)
such that the set of values of y(x) evaluated at an arbitrary set
of inputs x1, x2, . . . , xN jointly have a Gaussian distribution.
Thus, GP models the observations as a multivariate Gaussian
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distribution, and any output from a new input can be predicted
through Bayesian inference.

Given (xi , yi ) as an input and output pair, where
xi ∈ RN×1, yi ∈ R, then the multivariate Gaussian distribution
model can be given by

y ∼ N (0, K ) (10)

where K is the Gram matrix with size N × N , and its
elements are ki j = φ(xi )

T φ(x j ) = k(xi , x j ). A measure
of the similarity between points, which is known as the
kernel function, is introduced that allows us to implicitly use
high-dimensional feature spaces without costly computation.
This is an advantage of GP that we could consider covariance
functions that only can be expressed in terms of an infinite
number of basis functions φ(xi ). The kernels largely influence
the generalization properties of a GP model. With many
excellent properties such as being stationary and infinitely
differentiable, the Gaussian kernel is selected for the GP model
due to its smoothness. Meanwhile, the polynomial kernel is
a non-stationary kernel that allows the model to account for
feature interactions, which can work well with limited training
data. Combining the two kernels can lead to benefits from the
properties of both kernels. This means that the resulting kernel
will have a high value if either of the two base kernels has a
high value [25]. Therefore, a Gaussian kernel combined with
a polynomial kernel is used to determine K , which can be
formulated as

ki j = θ0ex p(−θ1(xi − x j )
2

2
) + (θ2 + θ3xT

i x j )
3 (11)

where θi are hyperparameters that govern many aspects of the
GP model including the length scale of correlations. Based
on the evaluation of the likelihood function p(y|θ), these
hyperparameters can be learned from the data. A solution to
estimate θ is to maximize the log-likelihood function, which
can be achieved by the conjugate gradient method, an efficient
gradient-based optimization algorithm [26].

Then, given the observations (x, y) and a new input xN+1,
the joint distribution over y1, y2, . . . , yN+1 is written by[

y
yN+1

]
∼ N (0, K N+1) (12)

K N+1 =
[

K k′
k′T kN+1,N+1

]
(13)

where K is the N × N covariance matrix given by Eq. (8),
the vector k′ has a size of N × 1 with elements k(xi , x N+1)
for i = 1, . . . , N , and the scalar kN+1,N+1 = k(xN+1, xN+1).

According to the property of conditional Gaussian
distributions [27], the conditional distribution of the new out-
put p(yN+1| y) is a Gaussian distribution with mean m(xN +1)
and covariance σ 2(xN +) given by

y ′| y ∼ N (m(xN + 1), σ 2(xN + 1)) (14)

m(xN + 1) = k′ K −1 y (15)

σ 2(xN + 1) = kN+1,N+1 − k′ K −1k′T (16)

Using the mean as the prediction value y ′ = m(xN + 1),
the output of any new input can be predicted based on known
observations.

Since the residual error is distributed in the field of vision
of the VMMS, it can be formulated as a function of the
measurements x = [Xin , Yin , φin ], which is also the input
of the GP regression. Thus, the residual error is modeled
that given the error � and the inputs x, if new inputs x′
are presented, the error �′

i (i = 1, 2, 3) can be predicted by
Eq. (14), which can be rewritten as

�′
i |� ∼ N (k′ K−1�, kN+M,N+M − k′ K−1k′T ) (17)

where N and M are the number of inputs in the training dataset
and new inputs, respectively. Then, the minimization problem
in Eq. (9) is solved by finding the GP model that maps from
x to �, and the compensation y(x′) of the error in the entire
field of view of the VMMS is obtained.

IV. SIMULATION AND RESULTS

The simulation focuses on testing the calibration perfor-
mance when the acquired images are distorted and conta-
minated by non-geometric factors. The camera model with
distortion and sensor noise and the manufacturing error of
the calibration object are simulated using the package pre-
sented in [28]. After the coarse calibration, GP modeling
and prediction are implemented based on the scikit-learn
framework [29].

As comparisons with the proposed GP method, the inverse
distance weighting (IDW) method [30], Ridge regression [10]
and Lasso method [11] are employed in fine calibration.
Concretely, IDW is applied for multivariate interpolation. With
a weighted average of the residual error values available at
measured points, the compensation of IDW at any target point
can be calculated as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�0 =
n∑

i=1

wi�i

wi = f (di )/

n∑
i=1

f (di )

f (d j ) = 1/d2
i

(18)

where wi is the weight of the i th measured point, di

is the distance between the target point (x0, y0) and the
measured point (xi , yi ), �i , and �0 represent the residual
errors at measured points and target points, respectively.
Moreover, to maximize the performance of Ridge regres-
sion and Lasso method, an exhaustive grid search [31] and
LARS algorithm [32] are adopted, respectively, which are also
state-of-the-art approaches for setting the best regularization
parameters.

In the simulation, a total of 300 training data points are
randomly generated, and a 10-fold cross-validation is first
performed as shown in Fig. 2, which shows that the proposed
GP method for fine calibration can significantly improve
the measurement accuracy, surpassing the other methods.
Instead of exhibiting an oscillation like the other approaches,
the proposed method shows stronger robustness with different
training data. Since the final measurement errors in the 10-fold
cross-validation are the smallest and most stable, there is no
sign of overfitting when using the GP method.
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Fig. 2. 10-fold cross-validation of the training data, comparing other methods
and GP using simulation data.

Fig. 3. Measurement errors in the position (a) after the coarse calibration
and (b) after the fine calibration with the simulation data.

Subsequently, all 300 training data are used to obtain the
fine calibrated model of the VMMS. Then, the updated model
is tested with a testing data set containing 140 testing data.
The results corresponding to coarse and fine calibrations are
visualized in Figs. 3 and 4, and the data are categorized into
different error ranges with different color markers. Generally,
the further away from the optical axis of the VMMS, the larger
the residual error after coarse calibration is. The measurement
exhibits considerably large errors after the coarse calibration,
which has a large number of errors exceeding 0.1 mm in
position and 0.03◦ in orientation. Inaccurate modeling of
the analytic calibration method contributes to the residual
error. Using the proposed GP method in the fine calibration,
the measurement error dramatically decreases. According to
the test dataset, all the measurement errors are suppressed
within the range of 0 − 0.05 mm and 0 − 0.03◦, respectively.
As listed in Table I, the mean measurement errors of the
VMMS drop from 0.0835 mm and 0.0208◦ to 0.0162 mm
and 0.0058◦. In other words, the proposed method reduces
the absolute errors by 80.50% and 71.85% in the position and
orientation components, and it delivers the best performance

Fig. 4. Measurement errors in the orientation (a) after the coarse calibration
and (b) after the fine calibration with the simulation data.

TABLE I

SIMULATION RESULTS FOR THE TEST DATASET

Fig. 5. The experiment setup. (a) A 3-RRR planar parallel manipulator,
LED active markers, and a red-ring reflector for the laser tracker. (b) Lens
and CMOS camera.

among all the considered two-step calibration methods based
on the simulation data.

V. EXPERIMENT AND DISCUSSION

Experiments are carried out to demonstrate the practi-
cability and reliability of the proposed method. As shown
in Fig. 5, the experimental setup includes a planar 3-RRR
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Fig. 6. Coarse calibration of VMMS. (a) An image of the checkerboard.
(b) The reprojection error. The red line represents the maximum reprojection
error; the blue dashed line shows the average reprojection error.

(3-revolute-revolute-revolute) robot, a motion control unit,
the VMMS, and a laser tracker (Leica Absolute Tracker
AT901-B, measurement accuracy 5 μm, scanning angle 360◦,
scanning range 0 − 40 m, scanning frequency 3000 H z,
angular resolution 0.14 arcsecond). Concretely, the motion
control unit consists of a DMC-1886 motion control card,
Yaskawa SGM7A-15AFA61 servo motors, the PICM-2900D
interconnection module and an industrial personal computer.
The VMMS has a 200mm ×200mm field of view, and it con-
sists of a Kowa LM16SC lens with the focal length of 16 mm,
the Genie TS M2048 CMOS camera with a resolution of
2048 × 2048 mounted on a portal frame, an image processor
(Intel(R) Core(TM) i7-4770M, CPU 2.40 GHz, RAM 4 GB),
and three LED active markers. The nonparallelism of the IP
and OP in the VMMS is analyzed in the previous work [33].
All experiments are conducted in an ISO Class 7 cleanroom
to maintain a stable environment.

In the first step, the coarse calibration is conducted for
the VMMS in Matlab. As shown in Fig. 6, the calibration
object is a HongCheng HBM03-3020-5Q checkerboard with a
1 μm pattern accuracy. Fig. 6 also qualitatively illustrates the
reprojection error after the coarse calibration. Each column
presents the average reprojection error in each calibration
image, while the dark blue column specifically shows the
highest error among all reprojection errors. The red line and
blue dashed line show the theoretical maximum and average
reprojection errors after the coarse calibration, which are
0.09 pixels and 0.08 pixels, respectively.

In the second step, as shown in Fig. 5, a red-ring reflector
of the laser tracker is mounted on the active marker, while the
active marker is rigidly connected to the 3-RRR manipulator
and their centroids coincide. The pose of the red-ring reflector
will be tracked and recorded by the laser tracker system during
the experiments. Then, keeping the 3-RRR robot at the original
point, both the coordinates of the VMMS and the laser tracker
system are initialized. The 3-RRR robot is controlled to move
to each pose within the field of view, and the pose of the
3-RRR robot is measured by the VMMS and laser tracker
system at the same time. Each pose is measured ten times by
the VMMS to obtain an average value. Then, the deviations
between the VMMS results and laser tracker results are
acquired as residual errors. After collecting 300 measurement

Fig. 7. 10-fold cross-validation of the training data, comparing the other
methods and GP using the experimental data.

TABLE II

EXPERIMENT RESULTS FOR THE TEST DATASET

Fig. 8. Comparison results of proposed method with other approaches using
the boxplot representation. (a) The results on position. (b) The results on
orientation.

errors as training data, a 10-fold cross-validation is performed,
and the calibrated VMMS models are obtained using the
training data and four calibration methods.

The 10-fold cross-validation in Fig. 7 indicates that the
proposed method possesses the strongest robustness and the
smallest error among all the considered approaches. To val-
idate the proposed method, all calibrated models are tested
with a testing data set, which was not used to train the
models, that consists of 140 new measurements. The results
are shown in Table II and visualized in Fig. 8 using a boxplot
representation.

As listed in Table II, the proposed method reduces the
measurement errors by 90.47% and 73.15%, and the mean
errors are reduced from 0.1079 mm and 0.0208◦ to 0.0102 mm
and 0.0056◦, respectively. As a reliable descriptive statistical
method, the boxplot representation in Fig. 8 denotes the
first (Q1) and third quartiles (Q3) of the error with boxes.
While the vertical lines (whiskers) extending from the boxes
represent the maximum and minimum, the horizontal red line
is defined as the median of the data. In addition, the red
triangle markers inside the boxes denote mean values, and
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Fig. 9. Measurement errors in the position (a) after the coarse calibration
and (b) after the fine calibration with the experimental data.

the red crosses outside boxes are extreme outliers. It can be
seen that the proposed method possesses the smallest median
and the shortest box height for both position and orientation,
which indicates the lowest maximum error compared with the
other four methods. For the position measurement, the pro-
posed method dominate all indices in boxplot with a massive
performance improvement, and even the peak value is almost
smaller than the medians of the other methods. Since the
DPnP algorithm already has a very high measurement accuracy
for orientation, the improvement in the orientation is not as
large as that for position after the calibration. Nevertheless,
the proposed method still has the fewest extreme outliers,
while other approaches have many outliers and suffer from
reliability problems, indicating the high robustness of the
proposed method in estimating robot pose.

Figs. 9 and 10 present the error distributions after coarse
calibration and after fine calibration. As can be seen from
Fig. 9, the residual error is still relatively large after the coarse
calibration, which reveals the necessity of the fine calibration.
Moreover, the absolute error of the position component is
noticeably larger when the measuring pose is near the border
of the field of view of the VMMS, which means that the
position measurement suffers more geometric error after the
coarse calibration. In addition, since the geometric error is
favorably reduced after coarse calibration and the DPnP algo-
rithm already has a high measurement accuracy in orientation,
the absolute error of the orientation component in Fig. 10
presents more randomness rather than symmetry, which indi-
cates it is mainly affected by non-geometric factors. After
the fine calibration using the GP method, the measurement
errors in both position and orientation dramatically decrease,
and the distributions of the measurement errors become flat
in shape. Meanwhile, the error distributions become more
homogeneous, and the peak values of the both position and ori-
entation components drop rapidly from approximately 0.2 mm
and 0.06◦ to 0.03 mm and 0.016◦.

Fig. 10. Measurement errors in the orientation (a) after the coarse calibration
and (b) after the fine calibration with the experimental data.

Fig. 11. Measurement accuracy of the calibrated system. (a) Absolute error
of the position. (b) Absolute error of the orientation.

To further evaluate the improvement of the calibrated
VMMS, the robot is controlled to input the displacements from
the robot’s origin within the range of 0−60 mm, and the mea-
surement results are calculated based on different calibrated
models. The data from the laser tracker system are also utilized
as reference values to calculate the absolute error. Meanwhile,
the standard deviation (SD) of ten measurement of each pose
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Fig. 12. Stability analysis of the calibrated system. (a) Standard deviation
of the position. (b) Standard deviation of the orientation.

is calculated to analyze the stability of the VMMS. As shown
in Fig. 11, using the proposed method, the absolute errors
of both the position and orientation components decrease
significantly. It also shows that the GP method always has the
smallest measurement error compared to the other methods.
Additionally, the IDW method, Ridge regression, and Lasso
method overcompensate, even when their parameters are best
tuned, while the GP method does not suffer from this issue.
As displayed in Fig. 12, most SDs of the other methods are
larger than that of the proposed method in both position and
orientation, which verifies the high stability of the proposed
method.

The results presented above show significant improvements
for the calibrated VMMS using the proposed method, which
yields the highest accuracy as well as more stable and reliable
performance than other methods such as IDW, Ridge regres-
sion and Lasso. This demonstrates the adaptability, smoothness
and robustness of the proposed method and that it has a strong
capability to handle both geometric and non-geometric errors
for VMMSs.

VI. CONCLUSION

This study presents a coarse-to-fine calibration method
for high-precision measurements of the planar 3-DOF robot,
which utilizes GP to minimize asymmetrical and nonlinear
errors in VMMSs. The setup and measurement principle of
the VMMS based on DPnP are introduced in detail, and a
two-step calibration method is proposed for high-accuracy

measurements in a large field of view. Furthermore, compu-
tational simulations and physical experiments are conducted 
to demonstrate the validity of the proposed method. The 
results show that the proposed method can effectively suppress 
measurement error and exhibit high stability. The results also 
indicate that the calibrated VMMS using the proposed method 
is capable of a successful combination of macro and micro 
manipulators during the macro-micro manipulation [3]. This 
study provides a competitive solution to the vision system 
calibration problem. We believe the proposed method will not 
only contribute to the development of macro-micro manipula-
tor systems but will also enable more practical applications of 
GP in industry.

In future investigations, full-closed loop control of 
macro-micro manipulation based on the calibrated VMMS will 
be studied.
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