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a b s t r a c t 

As the first step in manual or automated preimplantation genetic diagnosis (PGD), accurate locating of the blas- 

tomere is essential. In order to further improve success rates of the PGD process, it is necessary to obtain three- 

dimensional information of the blastomeres. In this study, a practical and effective pipeline that allows conven- 

tional brightfield microscopy systems to provide 3D imaging feedback for individual blastomeres inside embryos 

is proposed. The technique consists of two main phases, namely the blastomere identification and the 3D mod- 

eling of individual blastomeres. In the first phase, after a series of optical sections are obtained along the z-axis 

(z-stack), the embryo is located in the z-stack and the blastomere outline is then identified inside the embryo 

using a coarse-to-fine strategy; In the second phase, a probabilistic model combined with the machine learning 

approach is designed for the boundary estimation between individual blastomeres, and the 3D coordinate and 

model of each blastomere are obtained through further relocalization and reconstruction in the z-stack. Experi- 

mental results demonstrate that the proposed technique is valid and accurate compared with human perception. 

Specifically, the proposed technique achieves 90.32% precision rate, and the bias of blastomere position between 

the proposed method and human segmentation is 1.028 𝜇m . 
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. Introduction 

In the past decades, assisted reproductive technology (ART) has be-

ome the predominant treatment for infertility [1] . As a core process

n ART, in vitro fertilization (IVF) focuses on delicate manipulation of

arly-development-stage embryos. In order to avoid certain diseases or

isorders, preimplantation genetic diagnosis (PGD) is usually required

n the IVF [2] , i.e., extracting a blastomere from the early-stage em-

ryo for genetic analysis (which is known as embryo biopsy). Up to

ate, embryo biopsy is normally performed by proficient operators that

equires years of training. Nevertheless, the corresponding clinical preg-

ancy rate is only 23.3% according to the data in the latest two years

3] . To increase the clinical pregnancy rate, one promising solution is

o automate the PGD process by using robotic systems since it can elim-

nate potential contamination and improve manipulation accuracy [4] . 

As one of the crucial step in the PGD process, blastomere extraction

nvolves removal of a single blastomere from the embryo without dam-

ging the blastomere or the embryo itself. To automate the PGD process

tilizing robotics, effective identification and location of the blastomeres

ased on image processing technique is indispensable. Recently, various

maging techniques have been adopted in the community of automated
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ell manipulation. For instance, Wong et al. [5] optimize the membrane

rilling location by using texture-based segmentation. In Ref [6] ., Ang

t al. demonstrate the use of edge detection for the location of dissec-

ion. Although many different methods have been proposed, most of

hem locate the blastomere in one plane. Since blastomeres exist in 3D

pace and may have irregular shapes, it would be very meaningful if 3D

nformation of the blastomeres can be obtained during the manipulation

rocess. 

3D information is beneficial to increase the success rate of cell

urgery. Sun et al. develop a robot-aided microscopy system for intra-

ellular surgery [7] and a 3D reconstruction method based on decon-

olution and volume rendering for mitochondria extraction [8] , which

ignificantly increase the survival rate of organelles. Nowadays, several

inds of 3D optical sectioning technologies are available from the mar-

et, such as magnetic resonance imaging (MRI), computer tomography

CT), confocal microscopy. However, MRI and CT are often used to vi-

ualize large specimens, such as tissues and organs [9] . Confocal mi-

roscopy has several limitations for building robotic manipulation sys-

ems, such as high costs of purchase as well as operations of the micro-

copes, and small workspace for cell surgery. As a commonly used setup

n many robotic manipulation systems [10,11] , brightfield microscopy
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Fig. 1. Pipeline of 3D blastomere imaging under standard brightfield mi- 

croscopy. 
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Fig. 2. Acquisition of optical sections based on brightfield microscopy. 
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s a practical and suitable setup for 3D imaging [12] . To obtain 3D

nformation from brightfield microscopy, it normally requires a set of

D planar images taken at uniformly spaced focal planes (z-stack). Al-

hough the z-stack of images from conventional brightfield microscopy

ave been used for the study of entire cell segmentation and recon-

truction [13,14] , few published literature has presented 3D blastomere

maging techniques with the z-stack. Giusti et al. [15] use a graph-cut

ased method for blastomere morphology measurements. Nevertheless,

his method assumes the blastomeres have a spherical shape and the

egion of interest for segmentation process is set manually through ex-

eriments. 

In the z-stack images of embryos, transparent embryos together with

heir substructures have a complex appearance, which is often con-

idered as an obstruction to automatic processing. Additionally, blas-

omeres have a thick 3D topology overlap and deform with each other

hile being affected by varying defocus in the images [16] . Due to such

omplexity, it remains a challenging task to locate 3D blastomeres sep-

rately inside embryos through the brightfield microscopes. In this pa-

er, a 3D imaging technique to automatically identify and locate blas-

omeres in early-stage embryos for PGD under brightfield microscopy

s developed. The novelty in the proposed method is in the automatic

ipeline that combines a series of existing state-of-the-art image pro-

essing algorithms with the depth from focus technique to deal with

he highly challenging problem. After z-stack images are acquired with

 brightfield microscope, the embryo localization in the z-stack is con-

ucted, and a two-step method is introduced to locate the blastomere

dge contours within the embryo. To identify the boundaries among

ndividual blastomeres, a method that combines a probabilistic model

nd linear regression is proposed, and each blastomere is relocated by

ontour extraction of out-of-focus images. Then, the 3D position of each

lastomere is obtained, and the 3D reconstruction is presented. Finally,

xperiments are performed with embryos to demonstrate the feasibil-

ty and effectiveness of the proposed technique. The overview of the

ipeline is illustrated in Fig. 1 . The proposed 3D imaging technique can

reatly benefit embryo biopsy with 3D position information, and facil-

tate automated embryo image analysis as well as precise vision-based

ontrol [34] during embryo manipulation. Specifically, the global opti-

ization of embryo dissection [5] can be enabled based on the proposed

echnique. 

The remainder of the paper is organized as follows. In Section 2.1 ,

he imaging system description and image acquisition principle are in-

roduced. The embryo localization method is addressed in Section 2.2 .

he localization of blastomers in the embryo is presented in Section 2.3 .

ection 2.4 details the estimation of blastomere boundary. Identification

nd 3D modeling of individual blastomeres are described in Section 2.5 .

he validity of the proposed method is then verified by experiments in

ection 3 . Conclusions are given in Section 4 . 

. Methodology 

.1. Systems description and image acquisition guideline 

The basic concept of embryo z-stack image acquisition under in-

erted brightfield microscopy for 3D blastomere identification is pre-
ented with a schematic diagram shown in Fig. 2 . The microscope ob-

ective lens is driven by the focus motor along the z axis direction with a

tep size Δz , so that the whole embryo is imaged from the bottom to the

op. Since the average diameter of a mouse embryo is 70 𝜇m [17] , the

ength of the z-stack can be safely set as 100 𝜇m . For each optical section

n the embryo, an image is captured by the camera correspondingly and

ubsequently stored. The Depth of Field (DOF) [18] of the microscope

an be calculated as: 

𝑂𝐹 = 

𝜆 ⋅ 𝑛 𝑖 
𝑁𝐴 

2 + 

𝑛 𝑖 

𝑀 ⋅𝑁𝐴 

𝑟 (1)

here 𝜆 is the illuminating light wavelength of brightfield microscopy,

 i is the refractive index of the medium between the coverslip and the

ront lens element of the objective lens, and NA represents the objective

umerical aperture, r is the smallest resolving distance of the sensor on

he image plane, M is the total magnification. In order to fully acquire

nformation of the 3D structure, Δz of the z-stack should be smaller than

he DOF of the microscope setup. Once Δz is selected, and number of

mages is confirmed and z-stack images can be automatically obtained

ith the motorized focus. 

.2. Automatic localization of embryos 

After the z-stack is acquired, embryo localization is conducted in the

-stack by estimating the most in-focus optical section for the embryo

nd then locating the embryo in the field of view. 

Many images in the z-stack contain defocus blurs that make it dif-

cult to distinguish embryos from the background. The images which

ave good embryo textures are always those with high focus level. To

dentify a suitable image in the z-stack for embryo localization, global

ocus assessment is required to estimate the focus level of each image in

he z-stack. The Tenengrad variance operator [19] utilizes the variance

f the image gradient as the focus measurement, which can be formu-

ated as 

𝑥,𝑦 = 

∑
𝑖,𝑗∈Ω( 𝑥,𝑦 ) 

( 𝐺( 𝑖, 𝑗) − �̄� ) 2 (2)

here x and y are image coordinates, Ω( x, y ) is the local neighborhood

or each pixel, �̄� is the mean value of gradient magnitude, and G ( i, j ) is

he pixel’s value of gradient magnitude, which is calculated as 𝐺( 𝑖, 𝑗) =
 

𝐺 𝑥 ( 𝑖, 𝑗) 2 + 𝐺 𝑦 ( 𝑖, 𝑗) 2 . Tenengrad variance also shows high robustness to

oise and excellent overall performance [20] . Therefore, it is selected as

he focus measure operator to evaluate the z-stack image, and the image

ith the highest focus level values is chosen. 
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Fig. 3. Visualization of the Gabor feature sets and localization of the 

embryo in the field of view. (a) High focus level image from the z-stack 

using Tenengrad variance operator. (b) Visualization of the Gabor fea- 

ture sets. (c) Post-processing using Otsu’s method to obtain the region 

of interest. (d) Final result. 
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Further, Gabor filters [21] are utilized to separate the embryo in the

eld of view. As a reasonable model of cells in the human visual system,

abor filters are considered to be the model of how humans recognize

exture. The two-dimensional Gabor filters are constructed by 

 

 

 

 

 

 

 

ℎ ( 𝑥, 𝑦 ) = exp 
( 

− 

1 
2 

[ 
𝑥 2 

𝜎2 𝑥 
+ 

𝑦 2 

𝜎2 𝑦 

] ) 

cos (2 𝜋𝜇0 𝑥 ) 

𝜇0 = 1 
√
2 , 2 

√
2 , 4 

√
2 , … , ( 𝑁 𝑐 ∕4) 

√
2 

𝜃0 = 0 ◦, 45 ◦, 90 ◦, 135 ◦

(3) 

here 𝜎x and 𝜎y are the space constants of the Gaussian envelope along

he 𝑥 − axis and 𝑦 − axis, respectively, 𝜇0 are sinusoidal plane wave fre-

uencies along the x -axis, N c is pixel number of the width of the image.

0 are the Gabor filter orientations that rotating the 𝑥 − 𝑦 spatial system.

After extracting the Gabor energy from the image, Gaussian smooth-

ng is conducted to compensate for the variations of Gabor magnitude

eatures, and principal component analysis [22] is conducted to reshape

he Gabor feature sets into an intensity value for each pixel, as shown in

ig. 3 (b). It can be seen that there is a sufficient variance in the Gabor

eature information between the embryo and the image background due

o the texture differences. Then, post-processing using Otsu’s method

23] is conducted to automatically locate the embryo position in the

eld of view, and the region of interest is obtained, as illustrated with

 yellow box in Fig. 3 (d). 

.3. Identification and localization of blastomeres 

Once the embryo is located, the blastomeres are then identified in-

ide the region of interest. Inspired by [8] , to obtain high quality images,

he noise and defocus blurs can be removed by deconvolution. Thus, the

ichardson-Lucy deconvolution algorithm with total-variation regular-

zation (RLTV) [24] is employed. From the signal processing perspec-

ive, the image acquisition is considered as the convolution of the light

ignal X in the observed volume Y with the point spread function (PSF)

 , combined with noise degradation N . 

 = 𝑯𝑿 + 𝑵 (4) 

Therefore, deconvolution inverts the process of noise convolution in

q. (4) , and improves the contrast and resolution of images captured

ith the microscopes. The RLTV deconvolution method is a maximum-

ikelihood approach with a regularization term to eliminate the effect

f noise amplification, which can be written as follows, minimizing the

ost function: 

( 𝑿 ) = 𝟏 𝑇 𝑯𝑿 − 𝒀 
𝑇 log ( 𝑯𝑿 ) + 𝜆‖𝑫𝑿 ‖ (5)
1 
here the log operation is conducted componentwise 𝟏 = (1 , ., 𝟏 ) ∈ ℕ 

𝑁 ,

is a regularization parameter, and D is the finite difference matrix of

he first derivative. A precise and efficient approximation of the Gibson-

anni model [25] is constructed as the 3D PSF H . Then, the region of

nterest of the z-stack Y is deconvolved based on Eq. (5) , and the pos-

essed sections X are obtained for subsequent steps. 

A coarse-to-fine method is then designed for blastomere identifica-

ion inside the embryo. A region-based active contour algorithm is first

mplemented for the coarse segmentation. An active contour is a de-

ormable curve defined as 𝒄 ( 𝑠 ) = ( 𝑥 ( 𝑠 ) , 𝑦 ( 𝑠 )) , where s ∈ [0, 1], and x, y

re image coordinates. In the spatial domain, the evolution of active

ontour of an image can turn into minimizing the energy function: 

𝐸 = 𝐸 𝑖𝑛 ( 𝒄 ) + 𝐸 𝑜𝑢𝑡 ( 𝒄 ) 
= ∫

𝑖𝑛 ( 𝒄 ) |𝐼( 𝑥, 𝑦 ) − 𝑐 𝑖 |2 𝑑 𝑥𝑑 𝑦 + ∫
𝑜𝑢𝑡 ( 𝒄 ) |𝐼( 𝑥, 𝑦 ) − 𝑐 𝑜 |2 𝑑 𝑥𝑑 𝑦 (6) 

here E in is the internal energy term, E out is the external energy term, c i 
nd c o denote the average pixel values inside and outside the deformable

urve c , I ( x, y ) is the pixel value at image coordinates ( x, y ). According

o the image energy distribution, the minimization process of the energy

unction E drives the curve to approach the boundary of the object [26] .

he technique that localizes the energy from its global counterpart is

lso adopted to improve the accuracy and robustness of segmentation

27] . A texture-based thresholding process is used to generate a mask as

he initialization of the active contour model. Local standard deviation

ltering and binary thresholding are performed. After image closing, the

argest connected component is selected as the initial curve of the active

ontour model. Then, driven by the internal and external forces, the

ontour is evolved in the embryo image, and the outline of blastomeres

s obtained. 

With the completion of the aforementioned coarse locating step, fine

egmentation adjustment updates the accuracy of blastomere bound-

ry to the subpixel level. The fine segmentation process is performed

ased on an edge localization algorithm based on the edge and partial

egion effect acquisition model [28] . Instead of analyzing maximum gra-

ients, the detector assumes the edges from the discontinuity in the im-

ge. This technique is suitable for blurred edges with a precision that

an reach 0.01 pixel. Both position and orientation of edges are pre-

isely detected. Nevertheless, the complex textures inside the embryos

ause many pseudo-edges that do not belong to the blastomere bound-

ry. Thus, a strategy is applied such that only the detected edges within

 pixels from the coarse segmentation outline are selected and replace

he previous ones. Then, the fine localization of blastomeres is achieved,

s demonstrated in the green line in Fig. 4 . As presented in the zoom-in

ub-figure of Fig. 4 , the fine blastomere identification in green is more
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Fig. 4. Coarse-to-fine segmentation of blastomeres 

inside the embryo. Red line denotes the result of 

coarse localization. Blue lines are the outputs of the 

edge detector. Green line denotes the final segmen- 

tation. 
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Fig. 5. Estimation of the boundary between individual blastomeres. The yellow 

dashed circle indicated the region of interest for detecting the boundary. The 

black lines indicate all initial segments. The green line is the final result using 

the a contrario model, and the red segments are the result from machine learning. 

(For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ccurate and much smoother than the coarse identification in red, which

hows the capability of the coarse-to-fine method. 

.4. Boundary estimation between each individual blastomere 

In the most in-focus optical section of the embryo, the complex tex-

ures and low contrast on blastomeres still make it difficult for a com-

uter to distinguish the thin boundary between each blastomere. Many

dge detectors either fail to detect the boundary or mix the boundary

ith heterogeneous textures. Therefore, instead of elementary features

uch as edges, higher level features such as geometric structures need

o be considered. Several principles of visual perception such as good

ontinuation and connectedness can be utilized. 

A contrario is a probabilistic approach for determining potential good

eature continuation in terms of human visual perception. The number

f false alarms [29] is defined as the stochastic expectation of an event,

hich is denoted as 

( 𝑒 ) = 𝑁 𝑡𝑒𝑠𝑡𝑠 𝑃 𝐻 0 
(7)

here e indicates the event of interest, H 0 is the a contrario model, N tests 

enotes the number of possible occurrences of e , 𝑃 𝐻 0 
represents the

robability of e happening under H 0 . If N ( e ) ≤ 𝜖, the event e will be

egarded as 𝜖-meaningful. For line segment events, 𝜌 and 𝜃 are assumed

s the maximum distance and angle between line segments that qualify

or good continuation, and n 0 is denoted as the number of different pairs

f 𝜌 and 𝜃 values. Then, N tests can be regarded as all possible sequences

f k line segments in the image out of overall n line segments: 

 𝑡𝑒𝑠𝑡𝑠 = 𝑛 0 ⋅
𝑛 ! 

( 𝑛 − 𝑘 )! 
(8)

In the image domain with width w and length l , the probability that

he tip of the second line segment falls into the good continuation area

round the tip of the first segment is denoted as Π𝜌 ≃
𝜌2 𝜃
𝑤𝑙 

, and the prob-

bility of the maximum tolerant angle 𝜃 between these two segments is

𝜃 ≃ 𝜃

𝜋
. Thus, the probability term 𝑃 

(2) 
𝐻 0 

can be expressed as 

 

(2) 
𝐻 0 

= Π𝜌Π𝜃 = 

( 𝜌𝜃) 2 

𝜋𝑤𝑙 
(9)

Therefore, for a candidate boundary that has the chain of k line seg-

ents, there are 𝑘 − 1 junctions in total, and its probability 𝑃 
( 𝑘 −1) 
𝐻 0 

=
Π𝜌Π𝜃) ( 𝑘 −1) is obtained. According to Eq. (7) , we can approximate the

umber of false alarms associated with the event of good continuation
s 

( 𝜌, 𝜃, 𝑘 ) = 𝑛 0 ⋅
𝑛 ! 

( 𝑛 − 𝑘 )! 
⋅
( 

( 𝜌𝜃) 2 

𝜋𝑤𝑙 

) 𝑘 −1 
(10)

After the outline of all blastomeres is obtained, the centroid is calcu-

ated. Using the shortest distance between the centroid and the outline

s the radius, a circular region of interest inside blastomeres is acquired

or boundary detection, as shown in the yellow dashed circle in Fig. 5 .

n automatic line segment detector [30] is exploited to extract the all

nitial line segments specifically in this circular region of interest, which

re marked in black. By fixing 𝜖 = 1 , such that at most only one false de-

ection is accepted for each z-stack image in the a contrario model. While

determines how the smoothness of blastomere boundaries should be,

restricts the maximum distances between each line segments in the

andidates boundaries, which is proportional to the size of region of in-

erest. Thus, it is acceptable to set 𝜃 = 60 ◦ and 𝜌 = 30 pixels since two

egments of the boundary between individual blastomeres would not

ramatically change. After the a contrario model is calculated and valid

ontinuation segments are produced, the longest chain is selected as
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Fig. 6. 3D relocalization of individual blas- 

tomeres. 
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he blastomere boundary. The boundary segments that are not detected

re then obtained by the machine learning method. A linear regression

odel with the 10-fold cross-validation [31] is trained using the se-

ected boundary as the training dataset, and the remaining boundary

o the outline of blastomeres is estimated using the trained model. For

arly-stage embryos with more than two blastomeres, boundaries are

etected separately. Eventually, the entire boundary estimation is com-

leted, and together with the outline acquired previously, the contours

or each blastomere are obtained on the in-focus optical section. 

.5. 3D Relocalization and modeling for individual blastomeres 

In this step, individual blastomeres are located and modeled in 3D

y extracting the contours of each blastomere in all optical sections of

he z-stack image, as illustrated in Fig. 6 . Note that other image optical

ections also contain the slices of each blastomere that are in focus,

ut the effect of out-of-focus features appear due to the slice projection

rom upper or lower sections. For 3D modeling, the contours from such

efocused optical sections are required. 

Based on the contours obtained previously, the most in-focus sec-

ions for each blastomere are relocated by a regional focus measure-

ent, which uses the focus measure operator in Section 2.2 but limits

he assessment regions within the contours of individual blastomeres.

hen, the coarse-to-fine procedure in Section 2.3 is conducted for in-

ividual blastomeres. The most in-focus section of specific blastomere

lways has the largest area of the corresponding blastomere among all

ts slices in the z-stack. After individual blastomeres are identified on its

ocus section, its contour is unitized as the initialization in the localized

egion-based active contour algorithm for locating other slices of the

lastomere in the upper and lower sections. Note that along the z axis

irection, the segmentation result in each optical section is then used as

he initialization for the active contour model in the next section, until

he tip of each blastomere is encountered in an image, hence no addi-

ional area is detected and the algorithm stops. Accordingly, all slices of

ndividual blastomeres are obtained in the z-stack by this method. 

Following by the centroid calculation of all slices in the z-stack, the

D position of individual blastomeres can be located. Using a weighted

verage method, the blastomere coordinate �̄� ( ̄𝑥 , ̄𝑦 , ̄𝑧 ) is acquired as 

 

 

 

 

 

 

 

�̄� = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑥 𝑖 

�̄� = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑦 𝑖 

�̄� = 

∑𝑁 
𝑖 =1 ( 𝑆 𝑖 ⋅𝑧 𝑖 ) ∑𝑁 
𝑖 =1 𝑆 𝑖 

(11) 
here i denotes the index of optical sections, N represents the total num-

er of slices for individual blastomeres, B i ( x i , y i , z i ) and S i are the cen-

roid coordinate and area of the blastomere for corresponding section,

espectively. 

3D model of blastomeres is also reconstructed according to all the

ontours extracted from the z-stack images. Two techniques, namely

urface rendering and volume rendering, are mainly used to visualize

he 3D structure from the sampled data [32] . While the surface render-

ng approach requires a great amount of geometric primitives for the

urface estimation and often loses considerable information contained

ithin the z-stack images, volume rendering method can convey more

nformation and allow us to fully reveal the internal structure of 3D data

o be fully revealed. Volume rendering also exhibits the advantages of

igh reconstruction accuracy without intermediate surface extraction

teps, as mentioned in [8] . Thus, 3D reconstruction of blastomeres is

ccomplished with good resolution using volume rendering, thereby 3D

nformation of blastomeres is provided for successive PGD operations. 

. Experiments and results 

Experiments were performed to validate the practicability and relia-

ility of the proposed method. As displayed in Fig. 7 , a standard bright-

eld inverted microscope platform (Nikon Ti-U) with a robotic micro-

anipulator (Scientifica Patchstar) was developed. The 40 × Objective

ens (CFI Achro LWD NAMC 40XC) was selected, and illuminator (Prior

cientific LDB103NI) provided standard brightfeld illumination for the

xperiments. Concretely, controlled by the motion controller (ProScan

II), the 2-degree-of-freedom precision motorizsed stage (Prior Scien-

ific H117) carried the petri dish, where the embryos were held. Mouse

mbryos at the early stage were used in the experiments with the ap-

roval from the University of Toronto Health Sciences Research Ethics

oard, since they share similar analogs with human embryos. Focus Mo-

or (Prior Scientific PS3H122R), which can provide step sizes as small as

.002 𝜇m , gave excellent resolution for precise and repeatable focussing

n the z axis. Images were captured by the high performance CMOS cam-

ra (QImaging optiMOS) with a high resolution of 1920 × 1080 and

 corresponding pixel density 6.23 pixel / 𝜇m , and then sent to the desk-

op computer (Intel(R) Core(TM) i7-3770, CPU 3.40 GHz, RAM 16 GB)

or further processing. All algorithms were implemented in Mathworks

ATLAB. 

Based on the experimental setup, the DOF of the microscope was

rstly calculated as 2.41 𝜇m using Eq. (1) , which means the focal step

ize Δz should be lower than the DOF value. Therefore, 50 images of

-cell stage mouse embryo with the interval of 2 𝜇m were captured to
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Fig. 7. The experimental setup: robotic brightfield mi- 

croscopy system. 

Table 1 

Parameters of PSF for deconvolution. 

Name Value 

numerical aperture of the microscope (NA) 0.55 

wavelength ( 𝜆) 550 𝜇m 

magnification factor ( M ) 40 

refractive index of the lens immersion medium 1 

refractive index of specimen 1.35 

refractive index of coverslip 1.50 

dimension 675 × 675 

× 50 
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reate the z-stack. The global focus assessment of the z-stack images was

hen conducted based on Tenengrad variance operator, and the most in-

ocus section of the embryo was confirmed as the 18th section of the

-stack. Using Gabor filters in Eq. (3) , the embryo location in the field

f view were automatically obtained, and a region of interest was se-

ected with size 675 × 675 × 50 pixels. For original data size 1920

1080 × 50 pixels, locating the most in-focus embryo in the full-

esolution z-stack image took 88.01 seconds. In terms of the parameters

f the objective lens and the illuminator as listed in Table 1 , the 3D

SF was constructed, and the deconvolution was completed in the re-

ion of interest of the z-stack using the RLTV method in Eq. (5) . 30.64

econds were consumed for the 3D PSF construction and the deconvo-

ution process. Then, the coarse-to-fine method was used to identify the

lastomeres inside the embryo, which cost 11.87 seconds in total. 

After the blastomere outline was segmented from the embryo, the

oundary between individual blastomeres was detected using the a con-

rario model given in Eq. (7) . Then, using the detected boundary coor-

inates as the training set, a learning-based model was built and the

emaining boundary segments were estimated by linear regression. The

ntire boundary estimation cost 5.48 seconds. Once the contours for

ach blastomere were acquired on the embryo focus section, the re-

ional focus assessment was conducted in the z-stack for each blas-

omere separately, and the blastomere focus sections were relocated

s 18th and 19th sections, respectively. After the contours of individ-

al blastomeres were refined by the proposed coarse-to-fine method

n their focus sections, the localized region-based active contour was

sed again to further extract the contours in defocus sections for each

lastomere, and the initializations for the active contour model were

ontinuously updated using the segmentation result in the prior sec-

ion. On average, it took 6.45 seconds to extract each slice in an im-

ge. As presented in Fig. 8 (a) and 8 (b), all slices of the blastomeres in

he z-stack were eventually obtained as the first blastomere located be-

ween 4th and 34th sections, the second blastomere located between 6th
nd 30th sections. The area and centroid of each blastomere in differ-

nt sections of the z-stack were simultaneously calculated. According to

q. (11) and the pixel density, the blastomere coordinates were located

s �̄� 

(1) (160 . 337 , 71 . 007 , 38 . 008 𝜇𝑚 ) and �̄� 

(2) (151 . 515 , 105 . 860 , 36 . 083 𝜇𝑚 ) .
he 3D reconstruction of blastomeres was then achieved using the visu-

lization framework [33] , as exhibited in Fig. 8 (c). 

4-cell mouse embryos were also used to verify the robustness of the

roposed method. Focus assessments were conducted for multiple times

o separately estimate the boundaries between each blastomere pair, and

ll blastomeres were then successfully segmented and reconstructed fol-

owing the same pipeline. As shown in Fig. 8 (d), all four blastomeres

nside the embryo were reconstructed, which indicates the proposed

ethod is also capable of 3D imaging for 4-cell embryos. 

Overall, the computation time of the entire procedure was around 6

inutes under the current experimental setup. Decreasing camera reso-

ution and image sizes will contribute to reducing the time cost. More-

ver, with the development of the computer hardware, utilization of

he multi-core GPU, conduction of parallel processing procedures, con-

ersion from MATLAB to a more efficient programing language such as

/C++, the time cost can be significantly reduced. 

To evaluate the proposed method, the blastomeres have been manu-

lly segmented in each section of the z-stack with the pixel-wise annota-

ion by Image Processing and Computer Vision Toolbox from MATLAB.

fter the annotation, the pixel coordinates of the manually recognized

oundaries (MB) were recorded, and then were compared to the auto-

atic segmented boundaries (AB) from the proposed method. A Preci-

ionScore is applied to estimate the precision of the proposed method,

hich is defined as 

 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛𝑆𝑐 𝑜𝑟𝑒 = 

𝑛 ( 𝐴𝐵𝜓 𝑀 𝐵) 
𝑛 ( 𝐴𝐵) 

(12)

here n ( AB ) is the number of pixels of AB for each section, n ( AB 𝜓MB )

s the number of the true results. AB 𝜓MB is defined as the true when MB

ntersects with a 3-pixel neighborhood of AS. As presented in Fig. 9 (a),

he green squares denote AB pixels, the red squares denote MB pixel, and

he yellow squares denote the neighborhood pixels of AB, and the blue

oundary gives an example of the neighborhood of a target AB pixel. If

he blue boundary includes a MB pixel, the target AB pixel is deemed as

recise, and AB 𝜓MB is true. If the PrecisionScore reaches 85% or higher,

he automatic segmentation is regarded as accurate and successful. As

llustrated in Fig. 9 (b), out of 31 blastomere images in the z-stack, the

B of 28 images were correctly segmented, and the precision rate is

0.32%. The coordinates of the manual recognized blastomere were also

btained as �̄� 

(1) 
𝑚 (160 . 151 , 71 . 167 , 38 . 014 𝜇𝑚 ) . The distance between �̄� 

(1)

nd �̄� 

(1) 
𝑚 is 1.028 𝜇m , which proves that the proposed method is very

lose to human visual perception. 
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Fig. 8. Experimental results on the early-stage embryos. 

(a) Blastomere contour extraction on Section 4 , 6, 8, 10, 

12, 14, 16, 18. (b) Distribution of blastomere slices along 

z-axis. (c) Blastomeres in 2-cell embryo. (d) Blastomeres in 

4-cell embryos. 

Fig. 9. Comparisons with manual annotations. (a) Dia- 

gram of AB 𝜓MB . (b) PrecisionScore. 
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. Conclusions 

This study develops a 3D imaging technique to automatically iden-

ify and locate blastomeres inside early-stage embryos for PGD under

rightfield microscopy. A guideline of z-stack image acquisition is firstly

roposed, and focus assessment and Gabor filters are employed to locate

he most in-focus optical section of the embryo and its position in the

eld of view. After the RLTV deconvolution for the region of interest

n the z-stack, a coarse-to-fine method that combines localized region-

ased active contour and subpixel edge locating algorithms are used to

dentify the outline of blastomeres inside the embryo. Then, a bound-

ry estimation method is presented based on A contrario model and lin-

ar regression. Following by the blastomere contour extraction in the

-stack, the 3D coordinates of individual blastomeres are obtained, and

D reconstruction is achieved by volume rendering. 

The experiments are performed on 2-cell and 4-cell mouse embryos,

nd the results demonstrate that the proposed technique is effective

nd accurate for 3D blastomere identification inside embryos based on

onventional brightfield microscopy, thereby allowing multiple dimen-

ional embryo manipulation under the robotic systems, such as reposi-

ion and reorientation of the embryo. This 3D imaging technique also
rovides blastomere distributions and visualization inside the embryo,

hich is useful for embryo analysis and enables the global optimum of

esired location for biopsy to be found. 

Our method not only provides a good candidate for the 3D visu-

lization of blastomeres in automated PGD using conventional tools

hat smaller laboratories can afford, but also a starting point in embryo

iopsy prior to subsequent automation procedures such as embryo posi-

ion and orientation control, zona breaching, and blastomere extraction.

n future studies, the global optimization of dissection position selection

nd visual servo strategy for automatic embryo biopsy under the robotic

rightfield microscopy system will be investigated. 
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