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As the first step in manual or automated preimplantation genetic diagnosis (PGD), accurate locating of the blas-
tomere is essential. In order to further improve success rates of the PGD process, it is necessary to obtain three-
dimensional information of the blastomeres. In this study, a practical and effective pipeline that allows conven-
tional brightfield microscopy systems to provide 3D imaging feedback for individual blastomeres inside embryos
is proposed. The technique consists of two main phases, namely the blastomere identification and the 3D mod-
eling of individual blastomeres. In the first phase, after a series of optical sections are obtained along the z-axis
(z-stack), the embryo is located in the z-stack and the blastomere outline is then identified inside the embryo
using a coarse-to-fine strategy; In the second phase, a probabilistic model combined with the machine learning
approach is designed for the boundary estimation between individual blastomeres, and the 3D coordinate and
model of each blastomere are obtained through further relocalization and reconstruction in the z-stack. Experi-
mental results demonstrate that the proposed technique is valid and accurate compared with human perception.
Specifically, the proposed technique achieves 90.32% precision rate, and the bias of blastomere position between
the proposed method and human segmentation is 1.028 ym.

1. Introduction

In the past decades, assisted reproductive technology (ART) has be-
come the predominant treatment for infertility [1]. As a core process
in ART, in vitro fertilization (IVF) focuses on delicate manipulation of
early-development-stage embryos. In order to avoid certain diseases or
disorders, preimplantation genetic diagnosis (PGD) is usually required
in the IVF [2], i.e., extracting a blastomere from the early-stage em-
bryo for genetic analysis (which is known as embryo biopsy). Up to
date, embryo biopsy is normally performed by proficient operators that
requires years of training. Nevertheless, the corresponding clinical preg-
nancy rate is only 23.3% according to the data in the latest two years
[3]. To increase the clinical pregnancy rate, one promising solution is
to automate the PGD process by using robotic systems since it can elim-
inate potential contamination and improve manipulation accuracy [4].

As one of the crucial step in the PGD process, blastomere extraction
involves removal of a single blastomere from the embryo without dam-
aging the blastomere or the embryo itself. To automate the PGD process
utilizing robotics, effective identification and location of the blastomeres
based on image processing technique is indispensable. Recently, various
imaging techniques have been adopted in the community of automated
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cell manipulation. For instance, Wong et al. [5] optimize the membrane
drilling location by using texture-based segmentation. In Ref[6]., Ang
et al. demonstrate the use of edge detection for the location of dissec-
tion. Although many different methods have been proposed, most of
them locate the blastomere in one plane. Since blastomeres exist in 3D
space and may have irregular shapes, it would be very meaningful if 3D
information of the blastomeres can be obtained during the manipulation
process.

3D information is beneficial to increase the success rate of cell
surgery. Sun et al. develop a robot-aided microscopy system for intra-
cellular surgery [7] and a 3D reconstruction method based on decon-
volution and volume rendering for mitochondria extraction [8], which
significantly increase the survival rate of organelles. Nowadays, several
kinds of 3D optical sectioning technologies are available from the mar-
ket, such as magnetic resonance imaging (MRI), computer tomography
(CT), confocal microscopy. However, MRI and CT are often used to vi-
sualize large specimens, such as tissues and organs [9]. Confocal mi-
croscopy has several limitations for building robotic manipulation sys-
tems, such as high costs of purchase as well as operations of the micro-
scopes, and small workspace for cell surgery. As a commonly used setup
in many robotic manipulation systems [10,11], brightfield microscopy
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Fig. 1. Pipeline of 3D blastomere imaging under standard brightfield mi-
Croscopy.

is a practical and suitable setup for 3D imaging [12]. To obtain 3D
information from brightfield microscopy, it normally requires a set of
2D planar images taken at uniformly spaced focal planes (z-stack). Al-
though the z-stack of images from conventional brightfield microscopy
have been used for the study of entire cell segmentation and recon-
struction [13,14], few published literature has presented 3D blastomere
imaging techniques with the z-stack. Giusti et al. [15] use a graph-cut
based method for blastomere morphology measurements. Nevertheless,
this method assumes the blastomeres have a spherical shape and the
region of interest for segmentation process is set manually through ex-
periments.

In the z-stack images of embryos, transparent embryos together with
their substructures have a complex appearance, which is often con-
sidered as an obstruction to automatic processing. Additionally, blas-
tomeres have a thick 3D topology overlap and deform with each other
while being affected by varying defocus in the images [16]. Due to such
complexity, it remains a challenging task to locate 3D blastomeres sep-
arately inside embryos through the brightfield microscopes. In this pa-
per, a 3D imaging technique to automatically identify and locate blas-
tomeres in early-stage embryos for PGD under brightfield microscopy
is developed. The novelty in the proposed method is in the automatic
pipeline that combines a series of existing state-of-the-art image pro-
cessing algorithms with the depth from focus technique to deal with
the highly challenging problem. After z-stack images are acquired with
a brightfield microscope, the embryo localization in the z-stack is con-
ducted, and a two-step method is introduced to locate the blastomere
edge contours within the embryo. To identify the boundaries among
individual blastomeres, a method that combines a probabilistic model
and linear regression is proposed, and each blastomere is relocated by
contour extraction of out-of-focus images. Then, the 3D position of each
blastomere is obtained, and the 3D reconstruction is presented. Finally,
experiments are performed with embryos to demonstrate the feasibil-
ity and effectiveness of the proposed technique. The overview of the
pipeline is illustrated in Fig. 1. The proposed 3D imaging technique can
greatly benefit embryo biopsy with 3D position information, and facil-
itate automated embryo image analysis as well as precise vision-based
control [34] during embryo manipulation. Specifically, the global opti-
mization of embryo dissection [5] can be enabled based on the proposed
technique.

The remainder of the paper is organized as follows. In Section 2.1,
the imaging system description and image acquisition principle are in-
troduced. The embryo localization method is addressed in Section 2.2.
The localization of blastomers in the embryo is presented in Section 2.3.
Section 2.4 details the estimation of blastomere boundary. Identification
and 3D modeling of individual blastomeres are described in Section 2.5.
The validity of the proposed method is then verified by experiments in
Section 3. Conclusions are given in Section 4.

2. Methodology
2.1. Systems description and image acquisition guideline

The basic concept of embryo z-stack image acquisition under in-
verted brightfield microscopy for 3D blastomere identification is pre-
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Fig. 2. Acquisition of optical sections based on brightfield microscopy.

sented with a schematic diagram shown in Fig. 2. The microscope ob-
jective lens is driven by the focus motor along the z axis direction with a
step size Az, so that the whole embryo is imaged from the bottom to the
top. Since the average diameter of a mouse embryo is 70um [17], the
length of the z-stack can be safely set as 100um. For each optical section
in the embryo, an image is captured by the camera correspondingly and
subsequently stored. The Depth of Field (DOF) [18] of the microscope
can be calculated as:

A-n n;

Wi 0
where 4 is the illuminating light wavelength of brightfield microscopy,
n; is the refractive index of the medium between the coverslip and the
front lens element of the objective lens, and NA represents the objective
numerical aperture, r is the smallest resolving distance of the sensor on
the image plane, M is the total magnification. In order to fully acquire
information of the 3D structure, Az of the z-stack should be smaller than
the DOF of the microscope setup. Once Az is selected, and number of
images is confirmed and z-stack images can be automatically obtained
with the motorized focus.

DOF =

2.2. Automatic localization of embryos

After the z-stack is acquired, embryo localization is conducted in the
z-stack by estimating the most in-focus optical section for the embryo
and then locating the embryo in the field of view.

Many images in the z-stack contain defocus blurs that make it dif-
ficult to distinguish embryos from the background. The images which
have good embryo textures are always those with high focus level. To
identify a suitable image in the z-stack for embryo localization, global
focus assessment is required to estimate the focus level of each image in
the z-stack. The Tenengrad variance operator [19] utilizes the variance
of the image gradient as the focus measurement, which can be formu-
lated as

boy= D, (GGj)-G) @

i,jEQ(x.y)

where x and y are image coordinates, Q(x, y) is the local neighborhood
for each pixel, G is the mean value of gradient magnitude, and G(, j) is
the pixel’s value of gradient magnitude, which is calculated as G(i, j) =
7/ GG, )2+ G, (i, j)?. Tenengrad variance also shows high robustness to
noise and excellent overall performance [20]. Therefore, it is selected as
the focus measure operator to evaluate the z-stack image, and the image
with the highest focus level values is chosen.
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Further, Gabor filters [21] are utilized to separate the embryo in the
field of view. As a reasonable model of cells in the human visual system,
Gabor filters are considered to be the model of how humans recognize
texture. The two-dimensional Gabor filters are constructed by

h(x,y) = exp (—% [;—z + :—z > cos(2 pyx)
x ¥

3
po = 1V2.2V2,4V2, ... (N /4)V2 ®

0, = 0°,45°,90°,135°

where o, and o, are the space constants of the Gaussian envelope along
the x— axis and y— axis, respectively, u, are sinusoidal plane wave fre-
quencies along the x-axis, N, is pixel number of the width of the image.
0, are the Gabor filter orientations that rotating the x — y spatial system.

After extracting the Gabor energy from the image, Gaussian smooth-
ing is conducted to compensate for the variations of Gabor magnitude
features, and principal component analysis [22] is conducted to reshape
the Gabor feature sets into an intensity value for each pixel, as shown in
Fig. 3(b). It can be seen that there is a sufficient variance in the Gabor
feature information between the embryo and the image background due
to the texture differences. Then, post-processing using Otsu’s method
[23] is conducted to automatically locate the embryo position in the
field of view, and the region of interest is obtained, as illustrated with
a yellow box in Fig. 3(d).

2.3. Identification and localization of blastomeres

Once the embryo is located, the blastomeres are then identified in-
side the region of interest. Inspired by [8], to obtain high quality images,
the noise and defocus blurs can be removed by deconvolution. Thus, the
Richardson-Lucy deconvolution algorithm with total-variation regular-
ization (RLTV) [24] is employed. From the signal processing perspec-
tive, the image acquisition is considered as the convolution of the light
signal X in the observed volume Y with the point spread function (PSF)
H, combined with noise degradation N.

Y=HX+N “

Therefore, deconvolution inverts the process of noise convolution in
Eq. (4), and improves the contrast and resolution of images captured
with the microscopes. The RLTV deconvolution method is a maximum-
likelihood approach with a regularization term to eliminate the effect
of noise amplification, which can be written as follows, minimizing the
cost function:

JX)=1"THX - YT log(HX) + A|DX]||, )
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Fig. 3. Visualization of the Gabor feature sets and localization of the
embryo in the field of view. (a) High focus level image from the z-stack
using Tenengrad variance operator. (b) Visualization of the Gabor fea-
ture sets. (c) Post-processing using Otsu’s method to obtain the region
of interest. (d) Final result.

where the log operation is conducted componentwise 1 = (1,.,1) € NV,
A is a regularization parameter, and D is the finite difference matrix of
the first derivative. A precise and efficient approximation of the Gibson-
Lanni model [25] is constructed as the 3D PSF H. Then, the region of
interest of the z-stack Y is deconvolved based on Eq. (5), and the pos-
sessed sections X are obtained for subsequent steps.

A coarse-to-fine method is then designed for blastomere identifica-
tion inside the embryo. A region-based active contour algorithm is first
implemented for the coarse segmentation. An active contour is a de-
formable curve defined as c(s) = (x(s), y(s)), where s € [0, 1], and x, y
are image coordinates. In the spatial domain, the evolution of active
contour of an image can turn into minimizing the energy function:

E=E,(c)+E,(c)
= /m(c) | I(x,y)— cilzdxdy + fom(c) [I(x,y)— colzdxdy

where E;, is the internal energy term, E,, is the external energy term, c;
and c, denote the average pixel values inside and outside the deformable
curve c, I(x, y) is the pixel value at image coordinates (x, y). According
to the image energy distribution, the minimization process of the energy
function E drives the curve to approach the boundary of the object [26].
The technique that localizes the energy from its global counterpart is
also adopted to improve the accuracy and robustness of segmentation
[27]. A texture-based thresholding process is used to generate a mask as
the initialization of the active contour model. Local standard deviation
filtering and binary thresholding are performed. After image closing, the
largest connected component is selected as the initial curve of the active
contour model. Then, driven by the internal and external forces, the
contour is evolved in the embryo image, and the outline of blastomeres
is obtained.

With the completion of the aforementioned coarse locating step, fine
segmentation adjustment updates the accuracy of blastomere bound-
ary to the subpixel level. The fine segmentation process is performed
based on an edge localization algorithm based on the edge and partial
region effect acquisition model [28]. Instead of analyzing maximum gra-
dients, the detector assumes the edges from the discontinuity in the im-
age. This technique is suitable for blurred edges with a precision that
can reach 0.01 pixel. Both position and orientation of edges are pre-
cisely detected. Nevertheless, the complex textures inside the embryos
cause many pseudo-edges that do not belong to the blastomere bound-
ary. Thus, a strategy is applied such that only the detected edges within
3 pixels from the coarse segmentation outline are selected and replace
the previous ones. Then, the fine localization of blastomeres is achieved,
as demonstrated in the green line in Fig. 4. As presented in the zoom-in
sub-figure of Fig. 4, the fine blastomere identification in green is more

©
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Fig. 4. Coarse-to-fine segmentation of blastomeres
inside the embryo. Red line denotes the result of
coarse localization. Blue lines are the outputs of the

edge detector. Green line denotes the final segmen-
tation.
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accurate and much smoother than the coarse identification in red, which
shows the capability of the coarse-to-fine method.

2.4. Boundary estimation between each individual blastomere

In the most in-focus optical section of the embryo, the complex tex-
tures and low contrast on blastomeres still make it difficult for a com-
puter to distinguish the thin boundary between each blastomere. Many
edge detectors either fail to detect the boundary or mix the boundary
with heterogeneous textures. Therefore, instead of elementary features
such as edges, higher level features such as geometric structures need
to be considered. Several principles of visual perception such as good
continuation and connectedness can be utilized.

A contrario is a probabilistic approach for determining potential good
feature continuation in terms of human visual perception. The number

of false alarms [29] is defined as the stochastic expectation of an event,
which is denoted as

N(e) = NtesrsPHO (7)
where e indicates the event of interest, Hj is the a contrario model, Nyog
denotes the number of possible occurrences of e, Py, represents the
probability of e happening under Hy. If N(e) < ¢, the event e will be
regarded as e-meaningful. For line segment events, p and ¢ are assumed
as the maximum distance and angle between line segments that qualify
for good continuation, and n, is denoted as the number of different pairs

Fig. 5. Estimation of the boundary between individual blastomeres. The yellow
dashed circle indicated the region of interest for detecting the boundary. The
black lines indicate all initial segments. The green line is the final result using
the a contrario model, and the red segments are the result from machine learning.

(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

as
of p and 6 values. Then, N, can be regarded as all possible sequences n! (09)? -
: ; : : . N(p,0,k) =ng - B s (10
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After the outline of all blastomeres is obtained, the centroid is calcu-

In the image domain with width w and length [, the probability that
the tip of the second line segment falls into the good continuation area
around the tip of the first segment is denoted as I, ~ ’i—]g, and the prob-
ability of the maximum tolerant angle 6 between these two segments is

I, ~ g. Thus, the probability term ng can be expressed as

_ 9’

(2)
P =11
Ho rwl

oile )

Therefore, for a candidate boundary that has the chain of k line seg-
ments, there are k — 1 junctions in total, and its probability Pg‘o_” =
(11,I1,)*~Y is obtained. According to Eq. (7), we can approximate the
number of false alarms associated with the event of good continuation

lated. Using the shortest distance between the centroid and the outline
as the radius, a circular region of interest inside blastomeres is acquired
for boundary detection, as shown in the yellow dashed circle in Fig. 5.
An automatic line segment detector [30] is exploited to extract the all
initial line segments specifically in this circular region of interest, which
are marked in black. By fixing ¢ = 1, such that at most only one false de-
tection is accepted for each z-stack image in the a contrario model. While
0 determines how the smoothness of blastomere boundaries should be,
p restricts the maximum distances between each line segments in the
candidates boundaries, which is proportional to the size of region of in-
terest. Thus, it is acceptable to set # = 60° and p = 30 pixels since two
segments of the boundary between individual blastomeres would not
dramatically change. After the a contrario model is calculated and valid
continuation segments are produced, the longest chain is selected as
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Fig. 6. 3D relocalization of individual blas-
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the blastomere boundary. The boundary segments that are not detected
are then obtained by the machine learning method. A linear regression
model with the 10-fold cross-validation [31] is trained using the se-
lected boundary as the training dataset, and the remaining boundary
to the outline of blastomeres is estimated using the trained model. For
early-stage embryos with more than two blastomeres, boundaries are
detected separately. Eventually, the entire boundary estimation is com-
pleted, and together with the outline acquired previously, the contours
for each blastomere are obtained on the in-focus optical section.

2.5. 3D Relocalization and modeling for individual blastomeres

In this step, individual blastomeres are located and modeled in 3D
by extracting the contours of each blastomere in all optical sections of
the z-stack image, as illustrated in Fig. 6. Note that other image optical
sections also contain the slices of each blastomere that are in focus,
but the effect of out-of-focus features appear due to the slice projection
from upper or lower sections. For 3D modeling, the contours from such
defocused optical sections are required.

Based on the contours obtained previously, the most in-focus sec-
tions for each blastomere are relocated by a regional focus measure-
ment, which uses the focus measure operator in Section 2.2 but limits
the assessment regions within the contours of individual blastomeres.
Then, the coarse-to-fine procedure in Section 2.3 is conducted for in-
dividual blastomeres. The most in-focus section of specific blastomere
always has the largest area of the corresponding blastomere among all
its slices in the z-stack. After individual blastomeres are identified on its
focus section, its contour is unitized as the initialization in the localized
region-based active contour algorithm for locating other slices of the
blastomere in the upper and lower sections. Note that along the z axis
direction, the segmentation result in each optical section is then used as
the initialization for the active contour model in the next section, until
the tip of each blastomere is encountered in an image, hence no addi-
tional area is detected and the algorithm stops. Accordingly, all slices of
individual blastomeres are obtained in the z-stack by this method.

Following by the centroid calculation of all slices in the z-stack, the
3D position of individual blastomeres can be located. Using a weighted
average method, the blastomere coordinate B(x, 7, Z) is acquired as

- 1 N

X=5 Zic Xi

- 1 N

=5 Zimt Vi an
D AN

zZ = <N o S

i=1"2i

where i denotes the index of optical sections, N represents the total num-
ber of slices for individual blastomeres, B;(x;, y;, ;) and S; are the cen-
troid coordinate and area of the blastomere for corresponding section,
respectively.

3D model of blastomeres is also reconstructed according to all the
contours extracted from the z-stack images. Two techniques, namely
surface rendering and volume rendering, are mainly used to visualize
the 3D structure from the sampled data [32]. While the surface render-
ing approach requires a great amount of geometric primitives for the
surface estimation and often loses considerable information contained
within the z-stack images, volume rendering method can convey more
information and allow us to fully reveal the internal structure of 3D data
to be fully revealed. Volume rendering also exhibits the advantages of
high reconstruction accuracy without intermediate surface extraction
steps, as mentioned in [8]. Thus, 3D reconstruction of blastomeres is
accomplished with good resolution using volume rendering, thereby 3D
information of blastomeres is provided for successive PGD operations.

3. Experiments and results

Experiments were performed to validate the practicability and relia-
bility of the proposed method. As displayed in Fig. 7, a standard bright-
field inverted microscope platform (Nikon Ti-U) with a robotic micro-
manipulator (Scientifica Patchstar) was developed. The 40 x Objective
lens (CFI Achro LWD NAMC 40XC) was selected, and illuminator (Prior
Scientific LDB103NI) provided standard brightfeld illumination for the
experiments. Concretely, controlled by the motion controller (ProScan
II), the 2-degree-of-freedom precision motorizsed stage (Prior Scien-
tific H117) carried the petri dish, where the embryos were held. Mouse
embryos at the early stage were used in the experiments with the ap-
proval from the University of Toronto Health Sciences Research Ethics
Board, since they share similar analogs with human embryos. Focus Mo-
tor (Prior Scientific PS3H122R), which can provide step sizes as small as
0.002um, gave excellent resolution for precise and repeatable focussing
in the z axis. Images were captured by the high performance CMOS cam-
era (QImaging optiMOS) with a high resolution of 1920 x 1080 and
a corresponding pixel density 6.23 pixel/um, and then sent to the desk-
top computer (Intel(R) Core(TM) i7-3770, CPU 3.40 GHz, RAM 16 GB)
for further processing. All algorithms were implemented in Mathworks
MATLAB.

Based on the experimental setup, the DOF of the microscope was
firstly calculated as 2.41 um using Eq. (1), which means the focal step
size Az should be lower than the DOF value. Therefore, 50 images of
2-cell stage mouse embryo with the interval of 2 yum were captured to
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Table 1

Parameters of PSF for deconvolution.
Name Value
numerical aperture of the microscope (NA) 0.55
wavelength (1) 550 um
magnification factor (M) 40
refractive index of the lens immersion medium 1
refractive index of specimen 1.35
refractive index of coverslip 1.50
dimension 675 x 675

x 50

create the z-stack. The global focus assessment of the z-stack images was
then conducted based on Tenengrad variance operator, and the most in-
focus section of the embryo was confirmed as the 18th section of the
z-stack. Using Gabor filters in Eq. (3), the embryo location in the field
of view were automatically obtained, and a region of interest was se-
lected with size 675 x 675 x 50 pixels. For original data size 1920
x 1080 x 50 pixels, locating the most in-focus embryo in the full-
resolution z-stack image took 88.01 seconds. In terms of the parameters
of the objective lens and the illuminator as listed in Table 1, the 3D
PSF was constructed, and the deconvolution was completed in the re-
gion of interest of the z-stack using the RLTV method in Eq. (5). 30.64
seconds were consumed for the 3D PSF construction and the deconvo-
lution process. Then, the coarse-to-fine method was used to identify the
blastomeres inside the embryo, which cost 11.87 seconds in total.
After the blastomere outline was segmented from the embryo, the
boundary between individual blastomeres was detected using the a con-
trario model given in Eq. (7). Then, using the detected boundary coor-
dinates as the training set, a learning-based model was built and the
remaining boundary segments were estimated by linear regression. The
entire boundary estimation cost 5.48 seconds. Once the contours for
each blastomere were acquired on the embryo focus section, the re-
gional focus assessment was conducted in the z-stack for each blas-
tomere separately, and the blastomere focus sections were relocated
as 18th and 19th sections, respectively. After the contours of individ-
ual blastomeres were refined by the proposed coarse-to-fine method
on their focus sections, the localized region-based active contour was
used again to further extract the contours in defocus sections for each
blastomere, and the initializations for the active contour model were
continuously updated using the segmentation result in the prior sec-
tion. On average, it took 6.45 seconds to extract each slice in an im-
age. As presented in Fig. 8(a) and 8(b), all slices of the blastomeres in
the z-stack were eventually obtained as the first blastomere located be-
tween 4th and 34th sections, the second blastomere located between 6th

lllumination
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Fig. 7. The experimental setup: robotic brightfield mi-
croscopy system.
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and 30th sections. The area and centroid of each blastomere in differ-
ent sections of the z-stack were simultaneously calculated. According to
Eq. (11) and the pixel density, the blastomere coordinates were located
as B1(160.337,71.007,38.008 um) and B®(151.515, 105.860,36.083 um).
The 3D reconstruction of blastomeres was then achieved using the visu-
alization framework [33], as exhibited in Fig. 8(c).

4-cell mouse embryos were also used to verify the robustness of the
proposed method. Focus assessments were conducted for multiple times
to separately estimate the boundaries between each blastomere pair, and
all blastomeres were then successfully segmented and reconstructed fol-
lowing the same pipeline. As shown in Fig. 8(d), all four blastomeres
inside the embryo were reconstructed, which indicates the proposed
method is also capable of 3D imaging for 4-cell embryos.

Overall, the computation time of the entire procedure was around 6
minutes under the current experimental setup. Decreasing camera reso-
lution and image sizes will contribute to reducing the time cost. More-
over, with the development of the computer hardware, utilization of
the multi-core GPU, conduction of parallel processing procedures, con-
version from MATLAB to a more efficient programing language such as
C/C+ +, the time cost can be significantly reduced.

To evaluate the proposed method, the blastomeres have been manu-
ally segmented in each section of the z-stack with the pixel-wise annota-
tion by Image Processing and Computer Vision Toolbox from MATLAB.
After the annotation, the pixel coordinates of the manually recognized
boundaries (MB) were recorded, and then were compared to the auto-
matic segmented boundaries (AB) from the proposed method. A Preci-
sionScore is applied to estimate the precision of the proposed method,
which is defined as

n(ABy M B)
n(AB)

PrecisionScore = (12)
where n(AB) is the number of pixels of AB for each section, n(AByMB)
is the number of the true results. AByMB is defined as the true when MB
intersects with a 3-pixel neighborhood of AS. As presented in Fig. 9(a),
the green squares denote AB pixels, the red squares denote MB pixel, and
the yellow squares denote the neighborhood pixels of AB, and the blue
boundary gives an example of the neighborhood of a target AB pixel. If
the blue boundary includes a MB pixel, the target AB pixel is deemed as
precise, and ABy MB is true. If the PrecisionScore reaches 85% or higher,
the automatic segmentation is regarded as accurate and successful. As
illustrated in Fig. 9(b), out of 31 blastomere images in the z-stack, the
AB of 28 images were correctly segmented, and the precision rate is
90.32%. The coordinates of the manual recognized blastomere were also
obtained as B{"(160.151,71.167,38.014 um). The distance between B
and Bfnl) is 1.028 um, which proves that the proposed method is very
close to human visual perception.
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Fig. 8. Experimental results on the early-stage embryos.
(a) Blastomere contour extraction on Section 4, 6, 8, 10,
12, 14, 16, 18. (b) Distribution of blastomere slices along
z-axis. (c) Blastomeres in 2-cell embryo. (d) Blastomeres in
4-cell embryos.

Fig. 9. Comparisons with manual annotations. (a) Dia-
gram of AByMB. (b) PrecisionScore.
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4. Conclusions

This study develops a 3D imaging technique to automatically iden-
tify and locate blastomeres inside early-stage embryos for PGD under
brightfield microscopy. A guideline of z-stack image acquisition is firstly
proposed, and focus assessment and Gabor filters are employed to locate
the most in-focus optical section of the embryo and its position in the
field of view. After the RLTV deconvolution for the region of interest
in the z-stack, a coarse-to-fine method that combines localized region-
based active contour and subpixel edge locating algorithms are used to
identify the outline of blastomeres inside the embryo. Then, a bound-
ary estimation method is presented based on A contrario model and lin-
ear regression. Following by the blastomere contour extraction in the
z-stack, the 3D coordinates of individual blastomeres are obtained, and
3D reconstruction is achieved by volume rendering.

The experiments are performed on 2-cell and 4-cell mouse embryos,
and the results demonstrate that the proposed technique is effective
and accurate for 3D blastomere identification inside embryos based on
conventional brightfield microscopy, thereby allowing multiple dimen-
sional embryo manipulation under the robotic systems, such as reposi-
tion and reorientation of the embryo. This 3D imaging technique also

1
85% 80% 75%
PrecisionScore

provides blastomere distributions and visualization inside the embryo,
which is useful for embryo analysis and enables the global optimum of
desired location for biopsy to be found.

Our method not only provides a good candidate for the 3D visu-
alization of blastomeres in automated PGD using conventional tools
that smaller laboratories can afford, but also a starting point in embryo
biopsy prior to subsequent automation procedures such as embryo posi-
tion and orientation control, zona breaching, and blastomere extraction.
In future studies, the global optimization of dissection position selection
and visual servo strategy for automatic embryo biopsy under the robotic
brightfield microscopy system will be investigated.
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