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Abstract— Calibration is critical for the optical vision mea-
surement system (OVMS) that requires high measuring accu-
racy within a large field of view. In this paper, we propose a
practical two-step calibration method that improves measuring
accuracy for the multi-scale vision measurement system based
on a learning-based approach. In this method, an OVMS
combined with a degenerated perspective-n-points algorithm
is established for macro-micro manipulation systems. After
the OVMS is coarsely calibrated by the analytic technique,
the fine calibration is performed using the Artificial Nerual
Network to compensate for both geometric and non-geometric
measuring errors. Simulations, experiments and comparisons
are carried out with a laser tracker, and the results show
that the proposed two-step calibration method can remarkably
minimize measuring errors and shows stronger robustness and
stability, which enables the OVMS to be capable of macro-micro
manipulation tasks.

I. INTRODUCTION

The macro-micro manipulator systems have drawn consid-

erable attention in the field of precision engineering at small

scales due to the desirable properties of large-travel, high-

precision, and multiple degree-of-freedom (DOF) [1], [2],

[3]. The common point of such systems is they all consist of a

macro part carrying a micro part. While the macro manipula-

tor provides coarse positioning within a large workspace, the

micro part aims to complete the fine positioning and achieve

high manipulation accuracy. Therefore, in order to maintain

the successful combination of macro-micro manipulators, it

is necessary to keep the positioning accuracy of macro part

smaller than the workspace of the micro part, which brings

up a challenging work to set up a multi-scale measurement

method.

Thanks to the properties of non-contact, high resolution

and strong expandability, the optical vision measurement

system (OVMS) have become a popular selection for multi-

DOF measurement in micromanipulation. Although many

OVMSs have been adopted in regular robotic applications

such as kinematic calibration [4] and grasping tasks [5], it

still remains a demanding job to ensure the combination of

macro-micro manipulators using OVMSs, which usually re-

quires a measurement system to obtain micro-scale absolute

accuracy with a decimeter-scale field of view. It is known

that the performance of vision systems is strongly dependent
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upon calibration. To date, many methods for calibrating

OVMS have been presented [6], [7], [8]. However, these con-

ventional methods can hardly achieve required accuracy due

to the inaccurate sensor geometry and optical characteristics.

Klette et al. [9] report that idealized mathematical modeling

of lens distortion will lead to an infinite number of distortion

coefficients, which will boost the computational cost and is

not realistic to calculate. Additionally, practical factors, such

as environmental conditions and randomized manufacturing

errors, also worsen the measuring accuracy. For example,

Su et al. [10] observe that pixel shape and size often vary

between CCD array location. Thus, errors and uncertainties

involved with OVMSs cannot be eliminated but minimized,

so that some forms of compensation should be employed.

While analytic techniques can barely handle non-

symmetrical and nonlinear errors, learning-based approaches

are able to resolve these problems. Modeling the systems

from experience data directly, the learning-based techniques

are expected to well suited to complex system behaviors,

which are hard to be associated with analytical models.

Inspired by the information process in the biological neural

networks, the Artificial Neural Network (ANN) is an efficient

model for statistical pattern recognition, and it gradually

becomes the most potential research field in machine learn-

ing, which have been broadly applied in many areas of

industry [11]. Smith et al. [12] employ a scanning laser

line and vision system using ANN methods to reduce height

measurement error of 3D-objects. Cerveri et al. [13] develop

two techniques, namely local unwrapping polynomials and

RBF ANN, to correct the image distortion of the x-ray.

The strong capability to model confounded non-linear data

that contains significant noise makes ANN adapted to many

image correction tasks.

To the best of our knowledge, few studies have pre-

sented a multi-scale machine vision calibration for macro-

micro manipulation using ANN. In this paper, we propose a

practical and high-accuracy calibration method for OVMSs

with the learning-based technique. The system setup of the

manipulator platform and geometry model of OVMS are

given in details, and a coarse-to-fine calibration strategy that

combines an analytic approach and an ANN is developed to

minimize the measuring errors of OVMS. To verify the per-

formance of the proposed method, simulations, experiments,

and comparisons are carried out.
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II. METHODOLOGY

A. Setup and Geometric Model of the OVMS

Comparing with the series mechanism structures, parallel

mechanisms have the advantages of high stiffness, high

accuracy, and high repeatability [14], [15]. Therefore, the

planar parallel manipulator (PPM) becomes one of the best

candidates in micro-manipulation, and it is selected as the

macro part in macro-micro manipulation to provide coarse

positioning and load the micro positioner.
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Fig. 1. Configuration of the OVMS for the macro-micro manipulator.

The geometric model of the OVMS is sketched in Fig. 1,

where OP denotes the object plane, IP represents the image

plane, and Oo is the optical center. f is the focal length, and

d is XoYoYoZo is the optical sensor coordinate, XwYwZw is

the world coordinate on OP , µν is the image coordinate on

IP , whose origin is located at the top-left corner. Based

on the pinhole model [16], the projective transformation

equation can be written as
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where s denotes a scale factor, K represents the intrinsic

matrix, R is the rotation matrix, and T signifies the transla-

tion vector. Since OP and IP are parallel, the independent

parameter number in R can be degenerated to one. According

to Eq. (1) and Fig. 1, we obtain
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where θ represents the rotation angle between OP and

IP coordinates, (µ0, ν0) is the principal point, (tx, ty ,

tz) represents the transnational vector, α is scale factor

in µ-coordinate direction, and β is the scale factor in ν-

coordinate direction. We name this equation the degenerated

perspective-n-points model (DPnP).

From Eq. (2), s = 1
tz

can be acquired. Then, we get the

following equation

[
µ− µ0
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]

=

[
cos θ
tz

αXw − sin θ
tz

αYw + tx
tz
α

− sin θ
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(3)

Assuming a1 = tx
tz
, a2 =

ty
tz
, a3 = sin θ

tz
, a4 = cos θ

tz
, the

non-linearity of Eq. (3) can be removed, and we can construct

[
µ− µ0

ν − ν0

]

=

[
a1α− a3αYw + a4αXw

−a2β − a3βXw + a4βYw

]

(4)

To solve Eq. (4), it can be seen that at least two control

points are required to bring two constraints, so that the

parameters (a1, a2, a3, a4) can be obtained. If there are n

control points, Eq. (4) can be modified into the form
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If n = 2 and all the n control points are non-coincidence,

vector a can be obtained by a = A−1b. Once n > 2, Eq.

(5) turns into a over-determined linear equation system, and

it becomes to find a result a that minimize ‖aM − b‖. In

this case, the normal equation method is employed to seek

for a solution that is closest to aM = b. In other word, we

have the following equations:

{
a = M−1b, n = 2
a = (MTM)−1b, n > 2

(6)

After a is obtained by solving Eq. (6), the values of

θ, tx, ty, tz can be calculated.

B. System Calibration

The calibration of vision-based systems aims to determine

the model of OVMS and reduce the measuring errors, so that

the measured value is as close as possible to the actual value.

The proposed calibration method is composed of two steps.

The first step is to coarsely calibrate the OVMS with an

analytic technique, while the second step is to use a learning-

based approach for fine calibration.

According to the DPnP model shown above, the coarse

calibration for the OVMS is performed using the method

proposed in literature [17], since it is one of the most

recognized analytic approaches. Although the physical model

parameters are best set by the coarse calibration, there is

the residual error that cannot be completely compensated by

only changing the parameters. Therefore, ANN is applied

to further calibrate the OVMS. The residual error e can be

defined as

e = ‖va − vm‖ (7)

where vm is the measured value after the coarse calibration,

va is the actual value. After that, the minimization problem

in the fine calibration can be written as

min‖va − vm − y(x))‖ (8)
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where x = [x, y, θ] is the input vector, y(x) denotes the

ANN model. Once, va and vm are obtained, Eq. (8) can be

solved by calculating the ANN model.
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Fig. 2. Schematic of neural networks.

As a supervised learning, the ANN uses parametric forms

for the basis functions, where the parameter value will be

adjusted during the training process [18]. As can be seen

in Fig. 2, the ANN consists of three main part: the input

layer, the hidden layers, and the output layer. The inputs in

the input layer are the measurement of OVMS x = [x, y, θ],
while outputs in the output layer are the compensation in

fine calibration y = [∆x,∆y,∆θ]. Each neuron in hidden

layers contains a basis function, which is a nonlinear function

of a linear combination of the inputs. Concretely, the linear

combinations of hidden layers’ inputs Ii can be formulated

as

aj =

n∑

i=1

ωl
jiIi (9)

where j = 1, ...,m is the neuron number of l th hidden

layer, n is the input number of l th hidden layer, ωl
ji and

aj are defined as weights and activation, respectively. Then,

each of these combinations is transformed using a non-

linear and differentiable activation function. Compared with

the standard tanh activation function [19], Rectified Linear

Units (ReLU) [20] shows more biologically plausible and

converges much faster. Therefore, in this ANN method,

ReLU is employed with the advantages of computational

efficiency and non-saturation, which can be written as

Oj = max(0, aj) (10)

where Oj is the output of the j th neuron as well as an input

in the next layer. Each hidden layer repeats Eqs. (9) and (10)

to pass the data to the output layer.

Linking from the input layer to the output layer, the ANN

then serves as a parametric non-linear functions from input

vector x and the output vector y. The is achieved by the

network training, where the weights in the hidden layers are

tuned according to the training data. Given a training set

comprising a set of input vector xn, where n = 1, ..., N ,

and a corresponding set of target vectors tn, we need to

minimize the error function:

E(ω) =
1

2

N∑

n=1

‖y(xn, ω)− tn‖
2 (11)

where y(xn, ω) is the output vector of the ANN during

training, ω represents the weight matrix of ANN. Then, our

goal turns to find a weight matrix ω that minimizes the

function E(ω). Since E(ω) is a smooth continuous function

of ω, the smallest error value will occur when the gradient

vanishes as

∇E(ω) = 0 (12)

In order to compute the gradients of the error function with

respect to weights, back-propagation is involved to update

the weights in each neuron. According to the chain rule for

partial derivative, we construct

δE(ω)

δωji

=
δE(ω)

δaj

δaj

δωji

(13)

Then, the weights in each neuron can be obtained. How-

ever, there will normally be many inequivalent stationary

points and minima for Eq. (12). Since it is unrealistic to

find an analytical solution, iterative numerical procedures are

resorted. Among many optimization approaches, Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) al-

gorithm is highly competitive with fast convergence rate

due to the use of second derivatives of the error
δ2E(ω)
δωjiδωlk

,

and L-BFGS works much better than other candidates for

lower dimensional problems and small datasets [21]. For the

OVMS in parallel manipulator system, only a few hundred

measurement data at target points will be acquired as training

data. Thus, L-BFGS algorithm is applied, and it is expected

to converge faster and perform better.

Although a large number of layers in ANN may increase

the performance, the model would be over-fitting and suffer

a decrease in the accuracy with small training data. A large

number of neurons in ANN will also significantly raise the

computational cost. In this paper, accurate modeling and

relatively fast training are obtained using eight hidden layers

with ten neurons in each layer. Once trained, the ANN

provides compensation for residual error in the field of view

of the OVMS, which models the non-linear behavior and

considerable noise.

III. SIMULATION AND EXPERIMENT

A. Simulation Results

Although the OVMS exists for the PPM, the measuring ac-

curacy is determined by the ANN and the image quality cap-

tured by the optical sensor. Thus, to verify the robustness and

effectiveness of the proposed two-step calibration method, a

series of simulations were implemented. These simulations
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focused on testing the performances of the proposed method

when there were lens distortion, sensor noise in the OVMS

and manufacturing error of the calibration object during

the calibration process. The OVMS was simulated with

distortion and noises based on an open source package [22],

and ANN was implemented using the framework Scikit-learn

[23]. Moreover, Ridge regression [24] and Lasso method [25]

were involved as comparisons to the proposed method.

Fig. 3. 10-fold cross validation in simulation, comparing ANN and other
methods.

TABLE I

RESULTS TESTED BY SIMULATION

Position Orientation
Mean Improvement Mean Improvement

Coarse 0.0871 mm − 0.020◦ −

Ridge 0.0543 mm 34.97% 0.0084◦ 57.91%

Lasso 0.0541 mm 35.20% 0.0095◦ 52.51%

ANN 0.0195 mm 76.65% 0.0065◦ 67.44%

The simulation generated 300 training data points within

the field of view of the OVMS, then the 10-fold cross

validation was firstly performed. The error was calculated by

the difference between the true and measured values. Results

exhibit in Fig. 3 indicating the proposed method yields the

best performances among the four methods in terms of the

10-fold cross validation. ANN not only reduces the most

measuring error, but also has a high stability.

Then, the measurement models of the OVMS were cal-

ibrated using the training dataset, and these models were

tested with a new testing dataset, which contained 100

data points. Table I lists the total simulation results, which

indicate that the proposed ANN method has the highest

calibration accuracy compared to other three methods. Con-

cretely, the mean absolute measuring error is reduced by

76.65% and 67.44% on position component and orientation

component of the OVMS, respectively.

Laser Tracker System

PPM System

OVMS

(a)

(b)

Fig. 4. The experimental setup. (a) Full view of the setup. (b) Zoom-in
picture of the OVMS and the PPM.

B. Experimental Results

The experiments were conducted to validate the proposed

two-step calibration in practice application. As presented in

Fig. 4, a prototype of the 3-RRR PPM was manufactured

and selected as the macro part of our macro-micro manip-

ulator system, as it is the most common architecture with

a larger workspace among PPMs [26]. The laser tracker

(Leica AT901-B) was employed to calculate the residual

error. Connected with the motion control unit of the 3-RRR

PPM, the OVMS included an optical lens (Kowa LM16SC), a

CMOS sensor (Genie TS M2048), three active markers, and

an image acquisition unit inserted inside an image processor.

In this OVMS, white LED sources were employed on the

back of the marker, so that the measurement accuracy and

computational cost can be improved. The basic performance

of the image processor was tested in our previous work [27].

The images were captured in the 200 mm×200 mm field of

view by the high-resolution CMOS camera and transmitted

to the acquisition unit, and finally processed in an image

processor constituted by a high-performance computer.

In the first step, the coarse calibration was performed

with a high-precision glass checkerboard, which had 1µm
pattern accuracy. After coarse calibration using Matlab, the

theoretical average re-projective error was 0.09 pixel.

In the second step, the fine calibration was conducted to

compensate the residual errors. The OVMS and the laser

tracker were firstly initialized when the 3-RRR PPM was at
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Fig. 5. 10-fold cross validation in experiment, comparing ANN and other
methods.

TABLE II

RESULTS TESTED BY EXPERIMENT

Position Orientation
Mean Improvement Mean Improvement

Coarse 0.1117 mm − 0.0227◦ −

Ridge 0.0316 mm 71.67% 0.0121◦ 46.99%

Lasso 0.0349 mm 68.76% 0.0125◦ 44.96%

ANN 0.0093 mm 91.63% 0.0095◦ 58.00%

the original point. After that, the 3-RRR PPM was moved to

each target point within the field of view of OVMS. The post

of 3-RRR PPM was measured simultaneously by the OVMS

and the laser tracker, and the deviations were regarded as

the residual errors. 300 measurements were collected and the

residual errors were obtained as the training data. A 10-fold

cross validation was then conducted based on this dataset.

As can be seen in Fig. 5, the proposed method obtains the

highest measuring accuracy and strong robustness with the

stablest measurement result, and there is no sign of over-

fitting observed.

In order to further evaluate the performance of the pro-

posed method, 100 additional measurements were acquired

to test the calibrated OVMS models. The results are listed

in Table II. Among all four methods, the proposed method

still yields the highest measuring accuracy and gains 91.63%
and 58.00% measuring improvement on position and orien-

tation versus the coarse calibration. Compared with Ridge

and Lasso approaches in the second step, the proposed

method minimized the most measuring errors, which drop

from 0.117 mm and 0.0227◦ to 0.0093 mm and 0.0095◦,

respectively.

The measuring error distributions using proposed method

are visualized in Figs. 6 and 7. It can be seen that, large resid-

ual errors mainly distribute around the boundary of the field

of view in the coarse calibration. Additionally, the error on

orientation shows more randomness than on position, which

means the orientation measurement is affected more by non-

(a)

(b)

Fig. 6. Measuring accuracy after coarse calibration with experiment
data. (a) Error distribution of position component. (b) Error distribution
of orientation component.

(a)

(b)

Fig. 7. Measuring accuracy after fine calibration with experiment data. (a)
Error distribution of position component. (b) Error distribution of orientation
component.
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geometric factors. Using the ANN method, the measuring

errors drop remarkably after the fine calibration. Moreover,

the peak error value decreases dramatically from 0.2049 mm

and 0.0640◦ to 0.0333 mm and 0.02864◦. The error dis-

tributions also convert from extremely inhomogeneous to a

flat shape, which indicates the proposed two-step method is

stable, reliable, and effective.

IV. CONCLUSIONS

In this paper, we present a practical two-step calibra-

tion method for vision systems that aim to provide high-

precision and strong-robustness measurement for macro-

micro manipulation. The proposed calibration method com-

bines the analytic approach and ANN to reduce geometric

and non-geometric errors. The OVMS based on the DPnP

model is introduced in details, and an ANN is designed

for fine calibration. A series of simulations and experiments

are performed based on a 3-RRR PPM platform, and the

comparisons among the proposed method, single analytic

approach, Ridge and Lasso method are discussed. The results

show that the proposed method surpasses other methods, and

it achieves high measuring accuracy and adaptability in a

large field of view. The experimental results also indicate

that the calibrated OVMS is stable and suitable for multi-

scale measurement, which benefits the study of precision

engineering at small scales.
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